

Next Gen Queries
Alfred R. Fuller
May 20th, 2010
http://bit.ly/NextGenQueriesWave

Who?

•  Software Engineer

•  App Engine Datastore Team
–  Query Planner

–  Removed 1000 Entity Limit
–  Cursors/Prefetching

–  Python and Java SDK

3

4

Notes

•  View live notes and ask questions about this session on
Google Wave:
–  http://bit.ly/NextGenQueriesWave

•  Good background in previous IO talks
–  Building Scalable, Complex Apps on App Engine

•  Google I/O 2009 – Brett Slatkin

•  http://code.google.com/events/io/2009/sessions/
BuildingScalableComplexApps.html

–  Under the Covers of the Google App Engine Datastore
•  Google I/O 2008 – Ryan Barrett

•  http://sites.google.com/site/io/under-the-covers-of-the-google-app-
engine-datastore

5

Outline

•  Overview (of largest query changes since launch)

•  Background

•  Technology
–  Zigzag Merge Join

–  MultiQuery

•  Examples
–  Just a few interesting cases (not necessarily practical)

•  Corollaries

Current System

•  Incredibly Scalable

•  Schema-less

•  Able to perform many query operations
–  Equality Filter (=, IN)

–  Inequality Filter (!=, <, <=, >=, >)
–  Sort

•  Composite Indexes
–  Multiple filters (only 1 inequality) and sort orders
–  Logical AND operator

–  (not required for only equality filters and no sort)

6

7

Improvements – Query Capabilities

•  Combine filters using arbitrary query logic!
–  AND, OR, NOT, sub expressions

–  (still single inequality filter)

•  First class support for domain specific queries:
–  Geo-Query
–  Date Range Queries

–  (multiple inequality filters on numeric properties)

Improvements – Composite Indexes

•  Reduced requirements
–  Solve exploding index problem

–  Fewer indexes server more queries

•  Composite index selection = dark art
–  Space Vs Speed

–  Write Vs Read Latency/Cost

8

Scalability

9

10

Disclaimer

•  Next Gen Queries != Current or Next Release
–  Rolling out these features in pieces

–  Infrastructure is there

–  Exposing it to users will take time

•  Syntax/API not finalized

•  (some of the backend changes available today)

11

Example Model - Photo
–  Owner: person who posted picture

–  Tag: List of user assigned tags

–  People: List of people in the photo (either user assigned or
facial recognition)

–  Location: Geo location of where photo was taken
–  Date: Time/Date when the photo was taken

Background

12

Indexes

•  Index data = Set of ordered values

•  Index = Sorted collection of index data

•  Built-in Property Index:

•  Composite Index:

Kind Key Value Name

Index Key Composite Value

13

Query => Index Scan (Query Planner)

•  Split index data into 2 pieces:
–  Prefix: held constant

–  Postfix: different for each result

•  Equality filters => prefix

•  Orders => postfix

•  Inequality filters => range restrictions on the postfix

14

Photo
Photo
Photo
Photo

SELECT * FROM Photo WHERE tag = ‘family’

• Prefix Constraints
–  Kind == Photo

–  Name == tag

–  Value == ‘family’

• Postfix Ordering
–  key asc

Kind Key Value Name Photo family tag
key key

15

Photo
Photo
Photo
Photo

SELECT * FROM Photo ORDER BY date DESC

• Prefix Constraints
–  Kind == Photo

–  Name == date

• Postfix Ordering
–  date desc

–  key asc

Kind Key Name Photo date
key key

Value
5/19/10 5/20/10

16

Photo
Photo
Photo
Photo

SELECT * FROM Photo WHERE tag = ‘family’
AND tag = ‘outside’ ORDER BY date DESC

•  Index 1 on (tag, tag,
date)

• Prefix Constraints:
–  tag == ‘family’

–  tag == ‘outside’

• Postfix Order
–  date desc

–  key asc

17

Index Composite Value 1 Key
key key 5/19/10 5/20/10

tag tag family outside date

Zigzag Merge Join (Current)

18

Zigzag Merge Join

•  Efficiently finds index postfixes common to multiple scans

•  Produces intermediate false positive results
–  Skips past sections of non-matching entities

–  Tends to scale with size of requested results

19

Mass hysteria

Photo
Photo
Photo
Photo

• Prefix Constraints
–  S1.Kind == Photo

–  S1.Name == tag

–  S1.Value == ‘family’

–  S2.Kind == Photo

–  S2.Name == tag

–  S2.Value == ‘outside’

• Postfix Constraints
–  s1.Key == s2.Key

• Postfix Ordering
–  key asc

Kind Key Value Name Photo family tag

key key Kind Value Name Photo outside tag

SELECT * FROM Photo WHERE tag = ‘family’
AND tag = ‘outside’

Key
Key

S1:

S2:

20

MultiQuery (Current)

21

22

MultiQuery

•  Combines multiple query result sets
–  Uses priority queue based on orders

–  (newly optimized to avoid priority queue when possible)

•  Currently supports IN and !=
–  WHERE tag IN [‘family’, ‘friends’] ORDER BY date DESC

•  WHERE tag == ‘family’ ORDER BY date DESC

•  WHERE tag == ‘friends’ ORDER BY date DESC

–  WHERE tag != ‘beach’ AND tag !=‘coworkers’
•  WHERE tag < ‘beach’

•  WHERE tag > ‘beach’ AND tag < ‘coworkers’

•  WHERE tag > ‘coworkers’

Warning! Has unintuitive meaning
for multi-valued properties.
Means: Has a tag other than
‘beach’ and ‘coworkers’

Next Gen Features

Zigzag Merge Join += Sort

•  New features:
–  Merge on entire postfix (instead of just key)

24

Photo
Photo
Photo
Photo

SELECT * FROM Photo WHERE tag = ‘family’
AND tag = ‘outside’ ORDER BY date DESC

•  Index 1 on (tag, date)

• Prefix Constraints:
–  S1.tag == ‘family’

–  S2.tag == ‘outside’

• Postfix Constraints:
–  S1.date == S2.date

–  S1.key == S2.key

• Postfix Order
–  date desc

–  key asc

25

Index Key Composite Value tag date

Index Key tag date 1 outside

1 family S1:

S2:
Key date
key key 5/19/10 5/20/10

26

Zigzag Merge Join += OR, NOT

•  AND
–  S1.postfix == S2.postfix

•  OR
–  No join constraint
–  Every postfix matches
–  Each postfix only seen once

•  NOT
–  S1.postfix != S2.postfix for all S1.prefix and S2.prefix
–  Equivalent to set subtraction
–  NOT(a) == ALL – a
–  Does not require an inequality filter!!
–  Intuitive results for multi-valued properties!!

27

Not Example
•  a AND NOT(b)

–  a = [2,3,5]

–  b = [1,3,4]

–  result = [2,5]

•  Algorithm
–  a:2
–  b(>=2):3
–  2 matches
–  a:3
–  3 does not match
–  a:5
–  b(>=5):Null
–  5 matches
–  a:Null

•  Performance:
–  Only looked at 4 out of 6 keys to produce 2 results

((a AND b) OR c) AND NOT(d)

28

MultiQuery += OR

•  WHERE tag IN [‘family’, ‘friends’] OR person IN […] ORDER
BY date DESC
–  WHERE tag = ‘family’ ORDER BY date DESC
–  WHERE tag = ‘friends’ ORDER BY date DESC

–  WHERE person = ‘…’ ORDER BY date DESC

–  WHERE person = ‘…’ ORDER BY date DESC
–  …

•  No false positives but could be lots of dupes!

•  Performance vs. Zigzag depends on data

29

MultiQuery += Geo, Date Range, …

•  QuerySplitter
–  Produces multiple parallel query components

–  Geo/Date Range: range scans along space filling curve
•  Accuracy Vs # of parallel components

•  Entity Filter
–  Removes unwanted results

–  De-dupe always needed

–  Geo/Date Range: Fuzzy result pruning
•  Removes points outside of exact range

30

Examples (Current Vs Next)

31

•  Meaning: “Find recent photos of my family taken outside”

•  Minimum composite index requirement:
–  Current Gen: Index on (tag, tag, date)

•  Repeated multi-valued property, “tag” (exploding index)

–  Next Gen: Index on (tag, date)

32

SELECT * FROM Photo
 WHERE tag = ‘family’ AND tag = ‘outside’
 ORDER BY date DESC

•  Meaning: “Find all photos of my family and friends taken
outside but not on the beach”

•  Note: No sort order specified (will be ordered by tag ASC)

•  Minimum composite index requirement:
–  Current Gen: Index on (tag, tag, tag)

•  Repeated multi-valued property, “tag” (exploding index)

•  Unintuitive results (tag != ‘beach’ will have no effect)

–  Next Gen: No index required
•  Uses built-in indexes

33

SELECT * FROM Photo
 WHERE tag IN [‘family’, ‘friends’] AND
 tag = ‘outside’ AND tag != ‘beach’

•  Meaning: “Find recent photos of my family and friends taken
outside but not on the beach”

•  Note: Same as last query except ordered and using AND,
OR, NOT and sub expressions

•  Minimum composite index requirement:
–  Current Gen: Not possible because of order
–  Next Gen: Index on (tag, date)

•  Arbitrary number of ‘tag =‘ filters supported by this single index

34

SELECT * FROM Photo
 WHERE (tag = ‘family’ OR tag = ‘friends’) AND
 tag = ‘outside’ AND NOT(tag = ‘beach’)
 ORDER BY date DESC

•  Meaning: “Find recent photos of my family and friends taken
outside but not on the beach”

•  Note
–  Not reliant on proper tagging
–  Using OR on different properties,
–  NOT is applied to a entire sub-expression
–  Requires clever use of geo encoding to order by date

•  Minimum composite index requirement:
–  Current Gen: Not possible

–  Next Gen:
•  Index on (tag, date)
•  Index on (people, date)
•  Index on (geo(location), date)

35

SELECT * FROM Photo
 WHERE (tag IN [‘family’, ‘friends’] OR people IN […]) AND
 tag = ‘outside’ AND
 NOT(tag = ‘beach’ OR location IN [{Coastal Regions}])
 ORDER BY date DESC

What to use when?
•  Zigzag: produces intermediate false positive results

–  Tends to be O(R) worst case O(N)

•  MultiQuery/Query: produces duplicate correct results
–  Guaranteed to be O(R) as # of sub-queries is constrained

•  Actual performance depends on query and shape of the data

•  Prefer MultiQuery/Query when possible
–  Not possible when indexes are missing or features are not supported
–  Can use both on a single query

36

Scalability
Index

Requirements AND OR NOT

Domain
Specific
Queries

Zigzag O(R) –
O(N)

MultiQuery/
Query O(R)

R = size of final result set

N = size of largest sub-scan

Capabilities
•  Composite Index Requirements

–  Zigzag: many, reusable, and simple

–  MultiQuery/Query: Requires index very specific index

•  NOT
–  Zigzag: Any # of constrains on any # of properties + sort

–  MultiQuery: Any # of constraints on 1 property + first sort must be on
that property

37

Scalability
Index

Requirements AND OR NOT

Domain
Specific
Queries

Zigzag O(R) –
O(N) Low

MultiQuery/
Query O(R) High Fixed # of

filters

Restricted
of

parallel
queries

Single
property

AND

tag = ‘outside’

Planning/Optimizations

38 Google Confidential

WHERE tag = ‘family’
WHERE tag = ‘friends’

WHERE owner = ‘al’
WHERE owner = ‘nick’

WHERE tag = ‘outside’

AND

tag IN [‘family’, ‘friends’]

tag = ‘outside’

owner != ‘al’

owner != ‘nick’

WHERE

tag IN [‘family’, ‘friends’]

AND tag = ‘outside’

AND owner != ‘al’

AND owner != ‘nick’

OR

tag = ‘family’

tag = ‘friends’

NOT

owner = ‘al’

OR owner = ‘nick’

OR

owner = ‘al’

owner = ‘nick’

WHERE

tag IN [‘family’, ‘friends’]

AND tag = ‘outside’

AND owner != ‘al’

AND owner != ‘nick’

Planning/Optimizations + Index (tag, tag, owner)

39

tag = ‘family’

tag = ‘friends’

owner < ‘al’

‘al’ < owner < ‘nick’

owner > ‘nick’

WHERE tag = ‘family’ AND tag = ‘outside’ AND owner < ‘al’
WHERE tag = ‘family’ AND tag = ‘outside’ AND owner > ‘al’ AND owner < ‘nick’
WHERE tag = ‘family’ AND tag = ‘outside’ AND owner > ‘nick’’
WHERE tag = ‘friends’ AND tag = ‘outside’ AND owner < ‘al’
WHERE tag = ‘friends’ AND tag = ‘outside’ AND owner > ‘al’ AND owner < ‘nick’
WHERE tag = ‘friends’ AND tag = ‘outside’ AND owner > ‘nick’’

AND

tag = ‘outside’

OR

tag = ‘family’

tag = ‘friends’

NOT

tag = ‘beach’ AND

tag = ‘coworkers’,

-date

OR

owner = ‘al’

owner = ‘owner’

Planning/Optimizations + Index(tag, tag)

40

WHERE tag = ‘family’ AND tag = ‘outside’

WHERE tag = ‘friends’ AND tag = ‘outside’

WHERE owner = ‘al’

WHERE owner = ‘nick’

OR
tag = ‘family’ AND tag =
‘outside’

tag = ‘friends’ AND tag =
‘outside’

Space Vs Time (Write Vs Read Latency/Cost)

•  WHERE a = ‘…’ AND b = ‘…’ AND c = ‘…’
–  a = ‘…’

–  b = ‘…’
–  c = ‘…’

•  WHERE a = ‘…’ AND b = ‘…’ AND d = ‘…’
•  a = ‘…’

•  b = ‘…’

•  d = ‘…’

•  + Index(a, b, c)

•  + Index(a, b, d)
•  +Space, -Time, +Write, -Read

41

Already Available

•  + Index(a, b)

•  WHERE a = ‘…’ AND b = ‘…’ AND c = ‘…’
–  a = ‘…’ AND b = ‘…’

–  c = ‘…’

•  WHERE a = ‘…’ AND b = ‘…’ AND d = ‘…’
–  a = ‘…’ AND b = ‘…’
•  d = ‘…’

42

Corollaries

43

SearchableModel becomes useful!

•  Every query can now be solved using zigzag
–  Never a need to have more than one property in prefix

(although can be good to improve performance)

•  Almost never a reason to sort or restrict range on multi-
valued properties

•  Can handle arbitrary number of equal filters without needing
any extra indexes

•  Thus no more exploding indexes!

44

Cursors

•  Only store postfix
–  Much smaller

–  Can be used on any index with the same postfix
•  Equality filters can change completely

–  Can be used with multi-query
•  All queries in multi-query have the same postfix
•  Deduping issues

•  Store raw values
–  Positions can be generated directly from an entity if there are

no multi-valued properties in the postfix

–  A query with reversed orders can be used to scroll backwards
•  Requires trailing key descending order
•  Always requires extra indexes

45

Questions?
http://bit.ly/NextGenQueriesWave

46

