
1

What’s Hot in
Java for App Engine
Toby Reyelts
Don Schwarz
May 19, 2010

2

Ask questions and take notes

View live notes and ask questions about
this session at:

http://bit.ly/appengine6

3

3

http://bit.ly/appengine6
http://bit.ly/appengine6

Agenda

• Java support: one year later

• Dance Dance Robot
– Demo
– Code study

• Improvements
– New functionality
– Performance optimizations
– Improved compatibility

4

4

App Engine for Java: one year later

• We host 100,000 Java applications
– Over 1/3rd of all App Engine apps

• We serve 1000s of requests per second
– Also host many applications with large traffic spikes

• e.g. Gigya Socialize

5

5

Demo

6

Game Design

7

Transport

7

Game Design

8

Task Queues

8

Game Design

9

Storage

9

Channel Service

Asynchronous Server ⟺ Client Communication
– Channel-based
– Bi-directional

• Server
– Send messages via ChannelService object
– Receive messages in a web hook

• Client
– JavaScript library
– Receive server messages in a callback

• Built on Gmail chat client (Google Talk)

10

10

Server API
Channel Service

/**
 * ChannelService allows you to manage two-way connections
 * with clients.
 */
public interface ChannelService {

 /**
 * Creates a channel associated with the provided applicationKey
 */
 String createChannel(String applicationKey);

 /**
 * Sends a ChannelMessage to the client.
 */
 void sendMessage(ChannelMessage message);

 /**
 * Parse the incoming message in request. This method
 * should only be called within a channel webhook.
 */
 ChannelMessage parseMessage(HttpServletRequest request);
}

11

11

Client API
Channel Service

12

Languages
• JavaScript
• Java (Google Web Toolkit)

Sample code
var channel = new wnd.goog.appengine.Channel(channelId);
var socket = channel.open();

socket.onopen = function(event) {
 // socket is now fully functional
};

socket.onmessage = function(event) {
 // handle string msg (event.data)
};

socket.send(msg);

12

Task Queue Service

• Allows you to do work in the background
– Up to 50 requests/sec of offline requests

• Works in DevAppServer
– Automatic execution at specified rates
– Can see individual tasks and execute manually

• Tasks can take part in a datastore transaction
– Enqueue a task only when a commit succeeds

13

13

Blobstore Service

• Allows users to upload large files

• File upload handled by our infrastructure
– You get a callback with a blob reference
– Can query, delete existing blobs

• Blobs can be served back to the user (streaming)
– Or retrieved a chunk at a time programatically

• Images API can take blobs as input source
– Useful for thumbnailing user-provided images

14

14

Appstats

• Easy to use profiling of API calls for perf tuning

• In Java, uses ApiProxy wrapper technique
– Mentioned in last year’s Google I/O session

• Stores API call data to memcache

• Built-in servlet renders results and timing stats

15

15

New functionality

16

Datastore improvements

• Cursors
– Can iterate over results across HTTP requests
– No more 1000 query limit

• Bulk ID allocation
– Makes bulk upload feasible

• Opt-in to eventual consistency
– Can speed up queries if stale data is good enough

• Statistics
– Admin Console graphs of entity counts, sizes
– Can be queried programmatically also

• Many JDO/JPA improvements

17

17

URLFetch improvements

• Deadlines are now configurable
– Up to 10 secs per request

• Asynchronous API calls
– Make up to 10 simultaneous calls from each request
– Future-based API:

•Future<HTTPResponse> fetchAsync(HTTPRequest)

– Other APIs will expose asynchronous APIs in the future

18

18

Better integration through web hooks

• XMPP API
– Can send and receive XMPP messages

• Incoming email
– Receive email as an HTTP callback

• Google Wave API v2
– Allows active Wave robots as well as passive

19

19

Unit testing support

• Run unit tests using local API implementations

• Unit testing infrastructure in a separate jar
– appengine-testing.jar

– Configures ApiProxy to discover API impls on classpath

• TestConfig classes let you configure each API
– Datastore disk usage disabled by default
– Easily specify max memcache size

20

20

Performance optimizations

21

Precompilation

• Process application bytecode at deployment time
– Allows many Java libraries to work in our sandbox
– Saves time during loading requests
– Opportunity for more expensive optimizations

• Occasionally need to re-process bytecode for all apps
– Process each unique file only once
– Total bytecode: only ~35 GB

22

SDK App
Engine

Application files (checksums)
Never-before-seen files

Compilation chunks

22

Loading request latency (before and after)
Precompilation results

23

ORM

JRuby
(Rack)

Rhino
(Helma NG)

Real-world App #1

Real-world App #2

0 5 10 15 20

Application time API calls Garbage collection
Hotspot compilation Bytecode processing

23

Reflection Optimizations

• Big improvements
– Caching reflection access checks
– Failure can be expensive

• Sample Grails app
– 11K (!) reflective methods calls in loading request
– 50% against three methods

• Conclusion
– 10% faster startup for Groovy and JRuby

24

24

getMethod(java.lang.String.indexOf)

getMethod(ReflectTestTarget.foo)

invoke(java.lang.String.indexOf)

getDeclaredFields

getDeclaredMethods(java.lang.Object)

getConstructors(java.lang.Object)

getConstructors(java.lang.String)

getConstructors(CustomURLClassLoader)

setAccessible succeeded

0 15 30 45 60

Reflection Performance Part 1

Old New

25

getDeclaredFieldFailed

getDeclaredMethods(java.lang.String)

getDeclaredMethods(CustomURLClassLoader)

getDeclaredMethods(org.mortbay.jetty.Response)

setAccessible failed

0 625 1250 1875 2500

Reflection Performance Part 2

Old New

18,000!

26

Future performance improvements

• API call and I/O latency
– Much faster memcache calls

• Reduced JIT and GC time
– Improved parallelization

• Reserved instances
– Dedicated JVMs to reduce loading requests
– Will cost money, details coming soon
– Grants greater visibility into use of JVMs

27

27

Improved Compatibility

28

Opened up more of the JRE

• Libraries
– JAXB (javax.xml.bind)

– StAX (javax.xml.stream)

– XPath (javax.xml.xpath)

• Additional classes
– javax.annotation.Resource

– javax.annotation.Resources

– java.util.zip.ZipConstants

• Many inner classes required for serialization

29

29

More supported libraries

• Just to name a few
– Hessian (4.0.6)
– JDOM (1.1)
– Jersey (1.1.5)
– MyFaces (2.0.0)
– OpenAMF
– PureMVC
– Restlet (2.0M5)
– Struts 2
– Tapestry (5.1)
– VRaptor (3)
– Vaadin (6.1)
– Wicket
– ...

30

30

DevAppServer Sandbox Emulation

• New
– WhiteList enforced

• Works for reflection, too.

– Reflection permissions enforced

• How?
– Bytecode instrumented by JVM agent
– Runtime shim modifies app behavior

• All perfect then?
– Unfortunately still a few corner cases

31

31

Resources

• Speakers:
– Toby Reyelts <tobyr@google.com>
– Don Schwarz <schwardo@google.com>

• Questions and notes:
– http://bit.ly/appengine6

• Demo source code:
– http://code.google.com/p/dance-dance-robot

– http://dance-dance-robot.appspot.com

32

32

mailto:tobyr@google.com
mailto:tobyr@google.com
mailto:schwardo@google.com
mailto:schwardo@google.com
http://bit.ly/appengine6
http://bit.ly/appengine6
http://code.google.com/p/dance-dance-android
http://code.google.com/p/dance-dance-android
http://dance-dance-android.appspot.com
http://dance-dance-android.appspot.com

33

