


YouTube API Uploads:
Tools, Tips, and Best Practices
Gareth McSorley, Jeffrey Posnick, and Kuan Yong
May 20, 2010



View live notes and ask questions 
about this session on Google Wave:

http://bit.ly/9fCla2

http://bit.ly/9fCla2


Session Overview

Basic info for all uploaders

Uploading from a web app (browser-based upload)

Uploading from a client app (direct upload)

Resumable uploads

Handling metadata for uploaded videos

Mobile uploads

YouTube Direct



Session Overview

Basic info for all uploaders

Uploading from a web app (browser-based upload)

Uploading from a client app (direct upload)

Resumable uploads

Handling metadata for uploaded videos

Mobile uploads

YouTube Direct



YouTube Needs You!

Think of us for all your video hosting needs.

We have APIs to let you upload videos to YouTube from 
just about anywhere.

API uploads are nearly 15% of all YouTube uploads!



Always let users upload videos to their own 
YouTube account

YouTube accounts have soft cap of 2000 videos.
50 additional videos/day after the first 2000.
Don't solicit user uploads into your account!



Basic Info for All Uploaders

All upload API calls must contain a Developer Key.

Videos up to 10 minutes long.

Upload in original resolution and format.

Upload requests are rate limited.
Don't upload 2000 videos all at once!
If you hit rate limits (too_many_recent_calls HTTP 40x 
response), wait 10 minutes.



Session Overview

Basic info for all uploaders

Uploading from a web app (browser-based 
upload)

Uploading from a client app (direct upload)

Resumable uploads

Handling metadata for uploaded videos

Mobile uploads

YouTube Direct



Browser-Based Uploads

Submit metadata, get back URL and TOKEN:
POST http://gdata.youtube.com/action/GetUploadToken

Create HTML form:
<form action="URL?nexturl=http://www.example.com">
  <input id="file" type="file" name="file"/>
  <input type="hidden" name="token" value="TOKEN"/>
  <input type="submit" value="Upload" />
</form>

Browser submits directly to YouTube.

No excuse not to use AuthSub or OAuth.



Browser-Based Uploads
ActionScript 3 Example

Source: http://gdata-samples.googlecode.com/
svn/trunk/gdata/YouTubeApi/YouTubeApi.mxml

Live Demo: http://gdata-samples.googlecode.com/
svn/trunk/gdata/YouTubeApi/YouTubeApi.swf

http://gdata-samples.googlecode.com/svn/trunk/gdata/YouTubeApi/YouTubeApi.mxml
http://gdata-samples.googlecode.com/svn/trunk/gdata/YouTubeApi/YouTubeApi.mxml
http://gdata-samples.googlecode.com/svn/trunk/gdata/YouTubeApi/YouTubeApi.swf
http://gdata-samples.googlecode.com/svn/trunk/gdata/YouTubeApi/YouTubeApi.swf


Session Overview

Basic info for all uploaders

Uploading from a web app (browser-based upload)

Uploading from a client app (direct upload)

Resumable uploads

Handling metadata for uploaded videos

Mobile uploads

YouTube Direct



Direct Uploads

For installed apps, when you have direct access to 
video file.

But... check out resumable uploads.

HTTP POST of multipart/related MIME message, 
containing metadata and binary video data.

If your code is used by third parties, make sure 
you're uploading into the user's account.

Temptation is to use ClientLogin, but OAuth or 
AuthSub are preferable.



Session Overview

Basic info for all uploaders

Uploading from a web app (browser-based upload)

Uploading from a client app (direct upload)

Resumable uploads

Handling metadata for uploaded videos

Mobile uploads

YouTube Direct



Resumable Uploads

Similar in use case and best practices to direct 
uploads.

Two (or more) part process:
HTTP POST of video metadata. Response 
contains unique upload URL.
One of more HTTP PUTs to upload video data 
or query for status of interrupted upload.

Should be used instead of direct uploads 
anywhere client library support is available.

Perfect for low-bandwidth devices or large videos.



Resumable Uploads
Python Example

Source: http://gdata-samples.googlecode.
com/svn/trunk/gdata/resumable-
uploads/yt_resumable_upload.py

http://gdata-samples.googlecode.com/svn/trunk/gdata/resumable-uploads/yt_resumable_upload.py
http://gdata-samples.googlecode.com/svn/trunk/gdata/resumable-uploads/yt_resumable_upload.py
http://gdata-samples.googlecode.com/svn/trunk/gdata/resumable-uploads/yt_resumable_upload.py


Resumable Upload Example (1)

POST /resumable/feeds/api/users/menoexist/uploads
Authorization: GoogleLogin auth=<auth token>
X-GData-Key key=<dev key>
Content-Type: application/atom+xml
Content-length: 276
Host: uploads.gdata.youtube.com
Slug: my_file.mpg

<?xml version="1.0"?>
<entry ...>
  Atom video entry goes here.
</entry>



Resumable Upload Example (2)

HTTP/1.1 200 OK
Content-Length: 0
Expires: Fri, 01 Jan 1990 00:00:00 GMT
Server: Upload Server Built on ...
Location: http://uploads.gdata.youtube.com/resumableupload/
AEnB2Vr...4ftyz69ZqK8Hg
Pragma: no-cache
Cache-Control: no-cache, no-store, must-revalidate
Date: Tue, 20 Apr 2010 17:29:55 GMT
Content-Type: text/html



Resumable Upload Example (3)

PUT /resumableupload/AEnB2Vr...4ftyz69ZqK8Hg
Host: uploads.gdata.youtube.com
Content-length: 2048
Content-Type: video/mpeg
X-User-Ip: 127.0.0.1

[Video File]



Resumable Upload Example (4)

201 Created
content-length: 3120
content-location: http://gdata.youtube.
com/feedsa/api/users/menoexist/uploads/fjHde15ksgU
content-type: application/atom+xml; charset=UTF-8
location: http://gdata.youtube.
com/feeds/api/users/menoexist/uploads/fjHde15ksgU

<?xml version="1.0"?>
<entry ...>
  Atom video entry will be here.
</entry>



Resumable Upload Example (5)

PUT /resumableupload/AEnB2Vr...4ftyz69ZqK8Hg
Host: uploads.gdata.youtube.com
Content-length: 0
Content-Range: bytes */*



Resumable Upload Example (6)

HTTP/1.1 308 Resume Incomplete
Host: uploads.gdata.youtube.com
Expires: Fri, 01 Jan 1990 00:00:00 GMT
Server: Upload Server Built on ...
Content-length: 0
Range: bytes=0-1023
Pragma: no-cache
Cache-Control: no-cache, no-store, must-revalidate
Date: Tue, 20 Apr 2010 17:29:55 GMT
Content-Type: text/html



Resumable Upload Example (7)

PUT /resumableupload/AEnB2Vr...4ftyz69ZqK8Hg
Host: uploads.gdata.youtube.com
Content-length: 1024
Content-Range: bytes 1024-2047/2048
Content-Type: video/mpeg
X-User-Ip: 127.0.0.1

[Video File from byte 1024-end]



Session Overview

Basic info for all uploaders

Uploading from a web app (browser-based upload)

Uploading from a client app (direct upload)

Resumable uploads

Handling metadata for uploaded videos

Mobile uploads

YouTube Direct



Incomplete Video Metadata

Until recently, it was necessary to submit a title, 
description, and category at upload time.
New <yt:incomplete> tag can be used to defer 
metadata creation.

Video will remain in a "draft" state until 
metadata is supplied.
Perfect for mobile uploads!

Resumable uploads even have a "no metadata" 
option



Incomplete Video Metadata Examples (1)

<?xml version="1.0"?>
  <entry xmlns='http://www.w3.org/2005/Atom' xmlns:yt='http:
//gdata.youtube.com/schemas/2007' xmlns:app='http://www.w3.
org/2007/app'>
  <app:control>
    <yt:incomplete/>
  </app:control>
</entry>



Incomplete Video Metadata Examples (2)

POST /resumable/feeds/api/users/menoexist/uploads
Authorization: GoogleLogin auth=<auth token>
X-GData-Key key=<dev key>
Content-length: 0
Host: uploads.gdata.youtube.com
Slug: something_meaningful.mpg



Developer Tags

Used to group videos.
Tied to a particular developer key.
Way better than uploading to a single account.
On Upload:

<media:category scheme=
"http://gdata.youtube.com/schemas/2007/
developertags.cat">
  TagName
</media:category>

To Fetch: 
http://gdata.youtube.com/feeds/api/videos/-/
      %7Bhttp%3A%2F%2Fgdata.youtube.com       
      %2Fschemas%2F2007%2Fdevelopertags.cat
      %7DTagName



Session Overview

Basic info for all uploaders

Uploading from a web app (browser-based upload)

Uploading from a client app (direct upload)

Resumable uploads

Handling metadata for uploaded videos

Mobile uploads

YouTube Direct



Mobile Uploads
Android OS

For most cases, use the ACTION_SEND Intent.
public void onUploadClick(View v) {
 Intent uploadIntent = new Intent(Intent.ACTION_SEND);
 // In a real app, video would be captured from camera.
 File f = new File("/sdcard/test.mov");
 uploadIntent.setDataAndType(Uri.fromFile(f), "video/quicktime");
 startActivity(Intent.createChooser(uploadIntent, "Upload"));
}

Video will be uploaded into the YouTube account associated 
with Android device.
If you need more control, use the newest Google Data Java 
client library or raw HTTP communication.



Mobile Uploads
Android OS



Mobile Uploads
iPhone OS

Use UIImagePickerController (iPhone 3GS only).

Copy video file to app's Documents directory and delete 
after upload is successful.

Won't lose video file if app crashes/quits during upload.

Invoking video capture controller will most likely result in 
viewDidUnload and didReceiveMemoryWarning calls.

Make sure your app handles low memory situations properly!



Mobile Uploads
iPhone OS

UIImagePickerController *imagePicker = [[[UIImagePickerController alloc] init] autorelease];
imagePicker.delegate = self;
imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
imagePicker.mediaTypes = [NSArray arrayWithObject:(NSString *)kUTTypeMovie];
[self presentModalViewController:imagePicker animated:YES];

...

- (void)imagePickerController:(UIImagePickerController *)picker 
didFinishPickingMediaWithInfo:(NSDictionary *)info {
  NSURL *mediaUrl = [info valueForKey:UIImagePickerControllerMediaURL];
  NSString *fromPath = [mediaUrl path];
  NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES);
  NSString *documentsDirectory = [paths objectAtIndex:0];
  NSString *toPath = [documentsDirectory stringByAppendingPathComponent:kTempVideoFile];
  NSFileManager *fileManager = [NSFileManager defaultManager];
  [fileManager copyItemAtPath:fromPath toPath:toPath error:NULL]; 
...
}



Mobile Uploads
iPhone OS

Check out ASIHtttpRequest for making HTTP requests
http://allseeing-i.com/ASIHTTPRequest/
Easy to do progress bars, form POSTs, etc.

YouTube Direct mobile app source code:
http://code.google.com/p/ytd-iphone/
Reader exercise: Update code to use resumable upload API.

Side tip: Check out our blog post on how to play YouTube 
videos in iPhone/iPad apps.��

<embed> in UIWebView
http://apiblog.youtube.com/2009/02/youtube-apis-iphone-cool-
mobile-apps.html

http://allseeing-i.com/ASIHTTPRequest/
http://code.google.com/p/ytd-iphone/
http://apiblog.youtube.com/2009/02/youtube-apis-iphone-cool-mobile-apps.html
http://apiblog.youtube.com/2009/02/youtube-apis-iphone-cool-mobile-apps.html


Session Overview

Basic info for all uploaders

Uploading from a web app (browser-based upload)

Uploading from a client app (direct upload)

Resumable uploads

Handling metadata for uploaded videos

Mobile uploads

YouTube Direct



YouTube Direct
Overview

YouTube Direct (YTD) is an open source video 
submission platform that is built on top of the YouTube 
API and Google App Engine.

YTD has two components:
Embeddable video uploader <iframe>.
Admin-only moderation control panel.

Google Code Project:
http://code.google.com/p/youtube-direct/

http://code.google.com/p/youtube-direct/


YouTube Direct
Overview

Download the code and deploy to your own 
App Engine instance.

Demo at:
http://ytd-demo.appspot.com/test.html

http://ytd-demo.appspot.com/test.html


YouTube Direct
Upload Interface



YouTube Direct
Upload Interface



YouTube Direct
Upload Interface



YouTube Direct
Admin Interface



YouTube Direct
Architecture



Questions? Answers!



View live notes and ask questions 
about this session on Google Wave:

http://bit.ly/9fCla2

http://bit.ly/9fCla2



