

Making smart and scalable
Wave robots
David Mark Byttow
Marcel Prasetya
5-20-10

View live notes and ask questions about this
session on Google Wave!

http://bit.ly/robots-io2010

What are we going to cover?

Robot API Overview
How does it work?
What's new in V2?

Super-powered Robots
New features and best practices
Deep dive by example

Examples
Disassembling unique robots

Robot Liberation

Wave in 2 minutes or less

Google Wave - Get stuff done with groups of people

A wave is equal parts conversation and document

Reply
Anywhere

Custom
Extensions

Simple
Sharing
Model

Live
Editing

Robot API Overview

What's a Robot again?

Automated participants using
an HTTP-based, JSON
protocol to listen to events and
respond with operations

In the Wave world, robots and
humans have equal rights.

Human

Robot

Robot Protocol - Overview
Passive - Google Wave sends events for any wave your robot is
a participant of and interested in

Active - Your robot sends OAuth-encoded requests to Google
Wave and receives responses based on the requests

Robot Protocol - Events

1. Wave server
sends new

events

2. Event is proxied to
appropriate robots

and transformed into
JSON 3. JSON sent to

robot via HTTP

4. Robot
processes events

and content

Robots receive events from the Google Wave server when
waves that they are participants of are modified

Incoming event bundle is in JSON format

Event JSON example:
http://code.google.com/apis/wave/extensions/robots/protocol.html
#MessageBundles

http://code.google.com/apis/wave/extensions/robots/protocol.html#MessageBundles
http://code.google.com/apis/wave/extensions/robots/protocol.html#MessageBundles

Robot Protocol - Operations

8. Wave server
receives and
applies deltas

7. Operations are
interpreted, processed

and applied as
operations

6. JSON-RPC
sent back via

HTTP response

5. Robot
generates

operations based
on events

Example operation JSON:
http://code.google.com/apis/wave/extensions/robots/protocol.html
#Operations

Robots receive operations from the Google Wave server to
modify waves

Outgoing event bundle is in JSON-RPC format, and applied in
order

http://code.google.com/apis/wave/extensions/robots/protocol.html#Operations
http://code.google.com/apis/wave/extensions/robots/protocol.html#Operations

Client Libraries

Open-sourced Python and Java client libraries
Client libraries

Handle event and operation bundle serialization to and from
JSON into objects
Abstract the Wave model into classes
Enables developers to focus on the functionality instead of
the implementation details of the JSON wire protocol

What about PHP, Ruby, Perl, C#, Lisp, etc?
We started with App Engine as the platform for robots, so
we developed client libraries only for the App Engine
runtime environments (Python and Java)... more on that
later.

Client Libraries - "Hello World" in Python
from waveapi import events
from waveapi import robot
from waveapi import appengine_robot_runner

def OnWaveletSelfAdded(event, wavelet):
 wavelet.reply("\nHi everybody! I'm a Python robot!")

def OnWaveletParticipantsChanged(event, wavelet):
 for newParticipant in event.participants_added:
 wavelet.reply("\nHi : " + newParticipant)

if __name__ == '__main__':
 myRobot = robot.Robot('Examply',
 image_url='http://example.appspot.com/icon.png',
 profile_url='http://example.appspot.com/')

 myRobot.register_handler(events.WaveletParticipantsChanged,
 OnWaveletParticipantsChanged)
 myRobot.register_handler(events.WaveletSelfAdded,
 OnWaveletSelfAdded)
 appengine_robot_runner.run(myRobot)

Say hello when added to
the wave

Say hello to new
participants

Robot profile setup

Robot event listeners

Robot API V2 - What's new?

More robust operations
Versatile operations that run both on client and server to reduce
client-side complexity and snapshot synchronization
Bandwidth Control
Robots have more flexibility in controlling the frequency and
payload size of incoming event requests
Profile semantics
Robots can override their own profile images and names (e.g. to
act on behalf of users)

Data Liberation
Robots may search across and fetch wavelets that they have
access to
... and more

Robot API Best Practices

In V1, most of our operations were index and range based,
which result in a fragile API

Example on replacing all occurrences of "foo" with "bar" in V1
 TextView textView = blip.getDocument();
 String toFind = "foo"; int index;
 while ((index = textView.getText().indexOf(toFind)) != -1) {
 Range range = new Range(index, index + toFind.length());
 textView.replace(range, "bar");
 }

In V2, we introduce the document.modify operation that can
perform actions without using index as the reference

 blip.all("foo").replace("bar");

Safely search and replace content with document.
modify operation

 blip.all("foo").replace("bar");

Selector restricts or target the operation. Action modifies
the matched regions

Safely search and replace content with document.
modify operation (continued)

 selector action

 blip.all("Google").annotate("link/manual", "http://www.google.com");
 blip.all(ElementType.GADGET).replace("[blocked]");
 blip.first(ElementType.IMAGE).insertAfter("(tm)");
 blip.range(6, 12).delete();

Selector
all

first

at

range

Action
insert

insertAfter

replace

delete

annotate

Being frugal with context and filter

Context specifies which blips should be included in the event
bundle. Available context: ROOT, PARENT, SELF, SIBLINGS,
CHILDREN, and ALL

Filter tells the server to only send event which properties
match the given filter

If your robot is subscribed to a chatty event, setting the proper
context and filters could help to reduce the bandwidth and
CPU consumption for your robot

 @Capability(contexts = {Context.PARENT, Context.SELF},
 filter = "\\[\\[Google\\]\\]")
 public void onDocumentChanged(DocumentChangedEvent e) {
 ...
 }

Robot participant namespacing with proxying-for

A single robot proxies/represents many participants with
Proxying-For, specified in the participant id
(<robotid>+<proxyid>@appspot.com)

Robot that acts as a gateway for another service can
use this feature to send operations on behalf of the
service users

A Youtube robot youtube@appspot.com can send replies
to the wave on behalf of user1 and the reply will be
authored by youtube+user1@appspot.com

Robot participant namespacing with proxying-for
(continued)

// Get comments from Youtube service.
String vidId = "YiGdUmvPRy8";
List<Comment> comments = getComments(vidId);

// Post the comments to the wave.
for (Comment comment : comments) {
 // Setup a proxied wavelet.
 String user = comment.getUser();
 Wavelet proxied = wavelet.proxyFor(user);

 // Make the reply.
 proxiedWavelet.reply(comment.getText());
}

Actively pushing data into Wave

In V1, robots can only send operations in response to events. With
the Active API, robot can send operations outside the event loop

A gateway robot can use Active API to update a wave if there's an
event on an external service

 public void cronHandler() {
 // Setup OAuth.
 robot.setupOAuth(Credentials.CONS_KEY, Credentials.CONS_SECRET);

 // Create the stub wavelet.
 Wavelet wavelet = robot.blindWavelet(waveId, waveletId);
 wavelet.setRobotAddress("youtube@appspot.com");

 // Post the new comments to wave.
 for (Comment comment : getComments(videoId)) {
 wavelet.proxyFor(comment.getUser()).reply(comment.getText());
 }

 // Submit the pending operations.
 String url = "https://www-opensocial.googleusercontent.com/api/rpc";
 robot.submit(wavelet, url);
 }

Robot Examples - Disassemble!

Monty

Evaluates and executes Python code
Outputs the result directly in wave
Bootstraps the Python API itself allowing for operations to be
generated directly in Wave
Features used:

WaveletSelfAdded and BlipSubmitted events
Document.modify to replace content

Source code

http://www.corp.google.com/~davidbyttow/no_crawl/io2010/monty.py

Mr Ray

Allows non-wave users to participant in conversations on
Wave.
Syncs waves with the robot and creates a usable, alternative
client for non-Wave users to participate in.
1st place in Mashable's Google Wave API Contest!
Features used:

Proxy-For, used to represent non-wave users
Gadget for control flow communication

Ferry

Exports waves to Google Docs
Syncs changes to wave with created document
Features used:

Fetch wavelet, to retrieve wave contents
Gadget element, as a control panel
OAuth, for Google Docs access

Robot Liberation!

Robot Liberation - Viva la Revolution!

We now support running robots on your own domain
Yes, you can still run your robots on App Engine

How it works...
1. Register desired
(and available)
robot id and url.

2. Receive a one-
time token to verify
ownership on your
domain.

3. We make a call
to our server to
verify token
placement.

4. Handler responds
with token. 5. You receive your robot id,

as well as consumer key and
secret for OAuth verification.

Add your robot to any wave!

Liberated Robot Example - GoBot

Using the new, open-source Go Programming Language
developed at Google.

package main

import (
 "http"
 "waveapi"
)

func handlerFunc(e *waveapi.Event, w *waveapi.Wavelet) {
 w.Reply("Hello World!")
}

func main() {
 r := waveapi.NewRobot(
 "Hello robot",
 "http://exmaple.com/avatar.png",
 "http://example.com/profile.html",
 "")
 r.RegisterHandler(waveapi.E_WaveletSelfAdded, handlerFunc)
 http.ListenAndServe(":8080", r)
}

http://exmaple.com/avatar.png
http://example.com/profile.html

Robots can speak any language... with help

Javascript
Lisp
Perl
php
Ruby
C#
Objective-C
coldfusion

Get started today

http://code.google.com/apis/wave

Questions?

Thank you for listening!

http://bit.ly/robots-io2010

