

Introducing Android Open
Accessories and ADK
Jeff Brown, Erik Gilling, Mike Lockwood
May 10, 2011

Session Feedback
• http://goo.gl/IeddF
• Twitter: #io2011 #Android

3

http://goog.gl/leddF
http://goog.gl/leddF

USB on Android Yesterday
• Android USB device built-in functions

– USB mass storage
– adb
– USB tethering

• Limitations
– Most Android devices have no USB host support
– USB Host in Android 3.0 is very limited
– No USB APIs

4

Input Devices

USB is an asymmetric protocol
USB Basics

• Host
– Controls the entire bus
– Keeps track of all attached devices and hubs (enumeration)
– Initiates communication with the devices
– Is a power source

• Devices
– Communicates only with the host through endpoints
– Describes its capabilities to the host during enumeration
– Implements standard or vendor specific functions
– Can draw power from the host

6

Device describes its capabilities to host during enumeration via USB descriptors
USB Descriptors

• Device Descriptor
• Configuration Descriptor
• Interface Descriptor
• Endpoint Descriptor
• (and others)

7

Provides a top level description of the device
Device Descriptor

• Vendor ID (assigned by USB.org)
• Product ID (assigned by vendor)
• Device class, subclass and protocol IDs
• Manufacturer, Product and Serial Number strings

8

Configuration Descriptor
• Device may present multiple configurations
• Android devices have only one

– Configuration number
– List of interfaces
– Max power usage

9

Interface Descriptor
• An interface represents a specific function implemented by the device

– Interface number
– Class, Subclass and Protocol IDs
– List of endpoints

• Android examples:
– USB mass storage
– adb
– RNDIS (USB ethernet)
– MTP

10

Endpoints are the channels for sending and receiving data
Endpoint Descriptor

• Address
• Type (control, bulk, interrupt or isochronous)
• Direction (OUT: host to device, IN: device to host)
• Max packet size

11

Endpoint types
• Control

– Endpoint zero used for enumeration
– Vendor- and class-specific requests
– Host-initiated, bi-directional

• Bulk: For general-purpose I/O; uni-directional
• Interrupt: For small asynchronous messages/events
• Isochronous: For time critical, low latency messages

12

USB Host API

USB Host API
• New in Android 3.1
• Only supported on hardware with USB host
• Can support existing USB peripherals as well as devices designed for Android

14

Used to describe the capabilities of a device
USB Host classes

• UsbDevice
– Vendor and product ID
– Device class, subclass and protocol
– List of interfaces

• UsbInterface
– Interface class, subclass and protocol
– List of endpoints

• UsbEndpoint
– Type (bulk, interrupt)
– Direction
– Max packet size

15

Used for communicating with the device
USB Host classes (continued)

• UsbDeviceConnection
– Encapsulates an open connection to the device
– Claim and release interfaces
– Initiate transfers, wait for results

• UsbRequest
– Encapsulates data to be sent to or received from a device

16

Example: Finding device endpoints

17

private void openDevice(UsbDevice device) {

 int vid = device.getVendorId();

 int pid = device.getProductId();
 if (vid == 0x22B8 && pid == 0x70A8 && device.getInterfaceCount() > 0) {

 UsbInterface intf = device.getInterface(0);

 if (intf.getEndpointCount() == 2) {

 UsbEndpoint ep1 = intf.getEndpoint(0);

 UsbEndpoint ep2 = intf.getEndpoint(1);
 if (ep1.getDirection() == UsbConstants.USB_DIR_IN) {

 epIn = ep1;

 } else {

 epOut = ep1;

 }
 if (ep2.getDirection() == UsbConstants.USB_DIR_IN) {

 epIn = ep2;

 } else {

 epOut = ep2;

 }
 if (epIn == null || epOut == null) {

 Log.e(TAG, "endpoints in both directions not found");

 return;

 }

Example: Communicating With a Device

18

UsbDeviceConnection connection = mUsbManager.openDevice(device);

if (connection != null && connection.claimInterface(intf, false)) {

 // we are connected

}

// send a control request

int count = connection.controlTransfer(

 UsbConstants.USB_TYPE_VENDOR | UsbConstants.USB_DIR_OUT,

 request, value, index, message, message.length, timeout);

// bulk transfer

int count = mConnection.bulkTransfer(epIn, buffer, buffer.length, timeout);

// queue asynchronous request

UsbRequest request = new UsbRequest();

request.initialize(connection, epOut);

request.queue(buffer, bufferLength);

// wait for result

UsbRequest request = connection.requestWait();

Demo

Android Open Accessories

USB for the rest of the the robots
• Most Android devices do not support USB host mode
• Every compliant Android device supports USB device mode
• Accessory plays the role of the host

21

What is an Open Accessory?
• Simple USB protocol for communication between peripherals and Android devices
• Accessory is the host, Android is the device
• Bi-directional communication over two bulk endpoints
• Protocol for associating Android applications with the hardware they support

22

ADK
• Android Accessory Board:

– Based on the Arduino Mega 2560
– Maxim MAX3421E host controller
– Works with Arduino tool chain

(http://arduino.cc)

• Google Shield
– 3 RGB LEDs
– 4 buttons (3 mechanical, 1 capacitive)
– 3 servo channels, 2 relays
– joystick
– light & temperature sensors

23

Reference Android ADK App

24

Requirements for Open Accessory Hardware
• USB host
• Must supply 500mA @5V charging power

25

When a new device is connected, the accessory will perform these steps:
Open Accessory Handshake

• Send “Get Protocol” command to get Accessory protocol version. If this fails, the
device does not support accessories

• Send manufacturer, model, description, version, serial number, and URI strings to
identify the accessory to the Android Device

• Send “Start” command
• The Android device should re-enumerate in accessory mode and launch an app

26

USB Accessory Handshake, part 2
• You’re in Accessory Mode if:

– Vendor ID is 0x18D1 (Google)
– Product ID is 0x2D00 or 0x2D01

• Read configuration descriptors
• Look for first bulk IN and first bulk OUT endpoints
• Set configuration to 1
• Endpoints are now ready for communication

27

Open Accessory APIs
• New USB APIs in Android 3.1

– com.android.hardware.usb.*
– Use this if your app will require Android 3.1 (API 12) or later
– Supported on Motorola Xoom with Android 3.1 update

• Compatibility Library for Gingerbread
– com.android.future.usb.*
– Link against com.android.future.usb.accessory.jar
– Very similar to Android 3.1 API
– Use this if you want to support Gingerbread and later
– Supported on Nexus One and Nexus S with 2.3.4 update

28

Connecting to an Accessory
• Application describes compatible accessories in manifest meta-data
• USB Manager matches accessory to compatible application(s)
• Asks user if it is OK to use your app with the accessory or to choose among
multiple applications

• Application’s Activity is started with USB_ACCESSORY_ATTACHED Intent
• Association made permanent if the user selects “always use this app for this
accessory” in the dialog

• USB_ACCESSORY_DETACHED Intent sent when accessory disconnected

29

Example: AndroidManifest.xml

30

<manifest ...>

<application android:label="Accessory Sample">

<uses-library android:name="com.android.future.usb.accessory" />

<activity android:name="UsbReceiver">

<intent-filter>

<action android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED" />

</intent-filter>

<meta-data android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"

 android:resource="@xml/accessory_filter" />

</activity>

</application>

</manifest>

Example: accessory_filter.xml

31

<resources>

<usb-accessory manufacturer="Acme Corporation"

 model="USB Anvil"

 version="1.0"

 />

</resources>

UsbAccessory class
• Describes the USB accessory based on the strings it provides in the handshake

– Manufacturer Name
– Model Name
– Description (user-visible string)
– Version
– URL (web page to visit if no installed apps support the accessory)
– Serial Number (optional)

• Manufacturer, Model and Version are used for associating accessories with
applications

32

USB Manager class
• getAccessoryList() returns currently attached accessories (currently there
can only be one)

• openAccessory() returns a ParcelFileDescriptor

• hasPermission() to see if you have access to the accessory

• requestPermission() to request permission from user

33

Example: Opening an Accessory for IO

34

// Get the accessory from the USB_ACCESSORY_ATTACHED Intent

Intent intent = getIntent();

UsbAccessory accessory = mUsbManager.getAccessory(intent);

// Open the accessory

ParcelFileDescriptor pfd = mUsbManager.openAccessory(accessory);

if (pfd != null) {

 FileDescriptor fd = pfd.getFileDescriptor();

 InputStream input = new FileInputStream(fd);

 OutputStream output = new FileOutputStream(fd);

 // now read and write data to the accessory

}

Q&A Session feedback: http://goo.gl/IeddF
Twitter: #io2011 #Android

http://goog.gl/leddeF
http://goog.gl/leddeF

