

App Engine Backends

Justin Haugh, Greg Darke
May 10th, 2011

First things first

Justin Haugh
 Software Engineer
 Systems Infrastructure
 jhaugh@google.com

Greg Darke
 Software Engineer
 Offline Infrastructure
 darke@google.com

Session: http://goo.gl/MWelF
Hashtags: #io2011 #AppEngine
Feedback: http://goo.gl/Gtt4A

http://goo.gl/MWelF
http://twitter.com/#!/search/%23io2011%20%23AppEngine
http://goo.gl/Gtt4A

Agenda

The App Engine Way
Backends: App Engine++

Features
Hello World
Configuration
Demo Time

Using Backends
Best Practices
Caveats
The Future

Q&A

 The App Engine Way

The App Engine Way

"The goal is to make it easy to get started with a new web
app, and then make it easy to scale when that app reaches
the point where it's receiving significant traffic and has
millions of users."

App Engine Blog, April 7th, 2008

The App Engine Way

What that means:
easy deployment
dynamic scaling
scalable storage layer
rich set of APIs

The App Engine Way
split big problems into small pieces
fault-tolerance
horizontal scaling
web serving

The App Engine Way

But...
not everything is a web app

run a command
generate reports
store counters

The App Engine Way

But...
not everything is a web app

run a command
generate reports
store counters

lightweight instances
small memory
limited CPU
not addressable

The App Engine Way

But...
not everything is a web app

run a command
generate reports
store counters

lightweight instances
small memory
limited CPU
not addressable

limited execution
30s deadlines
anonymous instances

 Backends: App Engine++

Today, we are announcing the full public release of:

 App Engine Backends

Today, we are announcing the full public release of:

 App Engine Backends

Backends are a powerful new way to write
programs on App Engine.

Today, we are announcing the full public release of:

 App Engine Backends

Backends are a powerful new way to write
programs on App Engine.

Backends let you do things that were not possible
on App Engine before.

Today, we are announcing the full public release of:

 App Engine Backends

Backends are a powerful new way to write
programs on App Engine.

Backends let you do things that were not possible
on App Engine before.

Backends make App Engine a more complete
general-purpose computing platform.

Backends: App Engine++

What are Backends?

Backends: App Engine++

What are Backends?

App Engine Instances, and then some

Backends: App Engine++

What are Backends?

App Engine Instances, and then some
long-running

Backends: App Engine++

What are Backends?

App Engine Instances, and then some
long-running
high-performance

Backends: App Engine++

What are Backends?

App Engine Instances, and then some
long-running
high-performance
configurable

Backends: App Engine++

What are Backends?

App Engine Instances, and then some
long-running
high-performance
configurable
addressable

Backends: App Engine++

What are Backends?

App Engine Instances, and then some
long-running
high-performance
configurable
addressable
persistent

Backends: App Engine++

What are Backends?

App Engine Instances, and then some
long-running
high-performance
configurable
addressable
persistent
cloud process

Backends: App Engine++

What are Backends?

App Engine Instances, and then some
long-running
high-performance
configurable
addressable
persistent
cloud process

Powerful building blocks

Backends: App Engine++

What are Backends?

App Engine Instances, and then some
long-running
high-performance
configurable
addressable
persistent
cloud process

Powerful building blocks
Easy to use

Backends: App Engine++

What are Backends?

App Engine Instances, and then some
long-running
high-performance
configurable
addressable
persistent
cloud process

Powerful building blocks
Easy to use
Flexible

 Features

Backends: App Engine++

Features
RAM: 128MB to 1GB

Backends: App Engine++

Features
RAM: 128MB to 1GB
CPU: 600MHz to 4.8GHz

Backends: App Engine++

Features
RAM: 128MB to 1GB
CPU: 600MHz to 4.8GHz
no request deadlines

Backends: App Engine++

Features
RAM: 128MB to 1GB
CPU: 600MHz to 4.8GHz
no request deadlines
run indefinitely

Backends: App Engine++

Features
RAM: 128MB to 1GB
CPU: 600MHz to 4.8GHz
no request deadlines
run indefinitely
instance addressability

Backends: App Engine++

Features
RAM: 128MB to 1GB
CPU: 600MHz to 4.8GHz
no request deadlines
run indefinitely
instance addressability
resident or dynamic

Backends: App Engine++

Features
RAM: 128MB to 1GB
CPU: 600MHz to 4.8GHz
no request deadlines
run indefinitely
instance addressability
resident or dynamic
automatic restarts

Backends: App Engine++

Features
RAM: 128MB to 1GB
CPU: 600MHz to 4.8GHz
no request deadlines
run indefinitely
instance addressability
resident or dynamic
automatic restarts

App Engine-y!
easy to configure
fast deployment
graphs & consoles
dev_appserver

 What does this mean?

App Engine is now a general-purpose cloud
computing platform, suitable for:

high-performance servers
in-memory caching
self-driven programs
N-tiered architectures
heavyweight offline processing

We're well beyond simple websites.

Use cases

Memory-intensive
search index
social graph
game state
memcache

CPU-intensive
image manipulation
audio/video encoding
game engines
scientific computing
meme generation

Use cases

Use cases

Background processing
data pipeline
data groomer
web crawler
task execution

Commands & Scripts
schema migration
ad-hoc queries
load testing
report generation

 Hello World

~/hello/app.yaml

application: backends-io
runtime: python
version: 1
api_version: 1

handlers:
- url: /.*
 script: hello.py

~/hello/backends.yaml

backends:
- name: hello
 options: public

~/hello/backends.yaml

backends:
- name: hello
 options: public

Available at:

 http://hello.backends-io.appspot.com

~/hello/backends.yaml

backends:
- name: hello
 instances: 15
 options: public

Available at:

 http://hello.backends-io.appspot.com
 http://0.hello.backends-io.appspot.com
 http://1.hello.backends-io.appspot.com
 ...
 http://14.hello.backends-io.appspot.com

~/hello/hello.py

from google.appengine.api import backends

print 'Content-Type: text/plain'
print ''
print 'Hello, my name is %s' %
 backends.get_backend()

~/hello/hello.py

from google.appengine.api import backends

print 'Content-Type: text/plain'
print ''
print 'Hello, my name is %s.%d' % (
 backends.get_backend(),
 backends.get_instance())

Commands

appcfg backends . update [backend]
appcfg backends . list
appcfg backends . start [backend]
appcfg backends . stop [backend]
appcfg backends . delete [backend]

Hello World: update

appcfg backends . update

Application: backends-io
Host: appengine.google.com

Starting update of app: backends-io, backend: hello
Scanning files on local disk.
Cloning 5 application files.
Precompilation starting.
Precompilation completed.
Starting deployment.
Checking if deployment succeeded.
Deployment successful.
Completed update of app: backends-io, backend: hello

Hello World: list

appcfg backends . list

backends:
- name: hello
 instances: 15
 options: public
 state: START

Hello World: stop

appcfg backends . stop hello

Application: backends-io
Host: appengine.google.com
Stopping backend: hello
Backend 'hello' stopped.

Hello World: stop

appcfg backends . stop hello

Application: backends-io
Host: appengine.google.com
Stopping backend: hello
Backend 'hello' stopped.

appcfg backends . list

backends:
- name: hello
 instances: 15
 options: public
 state: STOP

Hello World: start

appcfg backends . start hello

Application: backends-io
Host: appengine.google.com
Starting backend: hello
Backend 'hello' started.

appcfg backends . list

backends:
- name: hello
 instances: 15
 options: public
 state: START

 Configuring Backends

Configuration

~/app/backends.yaml
lists each backend
can define up to 5

~/app/app.yaml
defines app
version is optional
defines handlers

shared by app, backends

~/app/<code>
shared by app, backends
individually updated

Configuration

~/app/backends.yaml

backends:
- name: crawler
 start: crawler/main.py
- name: search
 class: B8
 instances: 5
- name: worker
 options: dynamic

backends.yaml

name
instances
class
start
options

backends.yaml

name
used in commands

appcfg backends . start [backend]
used in URLs

[backend].app.appspot.com
used in APIs

Task Queue, Cron: target
global

shares namespace with versions
backends are not versioned

Backends API
backends.get_backend()

backends.yaml

instances
number of instances

resident: exactly N, always
dynamic: up to N, based on traffic

used in URLs
[instance].[backend].app.appspot.com

limits
max: 20 per backend

Backends API
backends.get_instance()

backends.yaml

class
price + performance

B1: 128M, 600MHz, $0.08/hr
B2: 256M, 1.2GHz, $0.16/hr
B4: 512M, 2.4GHz, $0.32/hr
B8: 1GB, 4.8GHz, $0.64/hr

price
includes memory & cpu

tracked by the minute
startup: 15 minute charge

adjustable
reconfigure class

backends.yaml

start
script to handle /_ah/start

one per backend
two uses

initialize state
run forever

startup period
other requests wait for /_ah/start to finish
success: HTTP 200-299 or 404

failed start
failure: instance is restarted

backends.yaml

options
set of boolean flags
public

allow external HTTP
dynamic

startup on demand
scales with traffic
shutdown when idle

failfast
disable pending queue
busy = immediate 503

 Demo Time

Demo: A generic counting service

Frontend:
Performs urlfetch to backend
Displays value to user

Counter backend:
Uses a dictionary as an in instance cache

loads counter from datastore if unknown
flushes cache on shutdown

Loadtest backend:
Multiple instances
Uses urlfetch to call counter backend

http://backends-io.appspot.com/welcome

http://backends-io.appspot.com/welcome

~/app/frontend.py

from google.appengine.api import backends
from google.appengine.api import urlfetch

url = '%s/backend/counter/inc' % (
 backends.get_url('counter'))

count = urlfetch.fetch(url, method='POST',
 payload='name=visitor&delta=1').content

print 'Content-Type: text/plain'
print ''
print 'Welcome visitor %s' % count

http://backends-io.appspot.com/welcome

http://backends-io.appspot.com/welcome

~/app/loadtest.py

import random
from google.appengine.api import backends
from google.appengine.api import urlfetch

url = '%s/backend/counter/inc' % (
 backends.get_url('counter'))

names = ['counter-%d' % i for i in range(10)]

while True:
 counter = random.choice(names)
 params = 'name=%s&delta=1' % counter
 urlfetch.fetch(url, method='POST',
 payload=payload)

http://backends-io.appspot.com/welcome

http://backends-io.appspot.com/welcome

~/app/counter.py

class CounterModel(db.Model):
 value = db.IntegerProperty(default=0)
 _dirty = False

class CounterStore(object):
 def __init__(self):
 self._store = {}
 self._has_shutdown = False

http://backends-io.appspot.com/welcome

http://backends-io.appspot.com/welcome

~/app/counter.py

class CounterStore(object):
 # Continued ...

 def get_value(self, name):
 if name not in self._store:
 model = CounterModel.get_or_new(name)
 self._store[name] = model
 return self._store[name]

 def inc_value(self, name, delta):
 model = self.get_value(name)
 model.value += delta
 model._dirty = True
 if self._has_shutdown: model.put()
 return model

http://backends-io.appspot.com/welcome

http://backends-io.appspot.com/welcome

~/app/counter.py

class CounterStore(object):
 # Continued ...

 def shutdown_hook(self):
 self.flush_to_datastore()
 self._has_shutdown = True

_counter_store = CounterStore()

class StartHandler(webapp.RequestHandler):
 """Handler for /_ah/start."""
 def get(self):
 runtime.set_shutdown_hook(
 _counter_store.shutdown_hook)

http://backends-io.appspot.com/welcome

http://backends-io.appspot.com/welcome

Demo: A generic counting service

Persistence via the shutdown hook:
Datastore Viewer
Instances console

http://backends-io.appspot.com/welcome

http://tidewater.appengine.google.com/datastore/edit?app_id=s~backends-io&version_id=counter&key=ag1zfmJhY2tlbmRzLWlvchkLEgxDb3VudGVyTW9kZWwiB3Zpc2l0b3IM
http://tidewater.appengine.google.com/instances?app_id=s~backends-io&version_id=counter
http://backends-io.appspot.com/welcome

 Using Backends

Best Practices

Resident Backends
Dynamic Backends
Scaling
Startup
Shutdown
Logging
Fail-Fast
Message Passing
Task Queues
Handlers

Resident Backends

Resident
instances always on
automatic restarts
run forever
explicit start/stop

Uses
continuous execution
pull queues
large addressable memory

web index
memcache

Pattern
start: load up state
handle requests

Dynamic Backends

Dynamic
instances on demand
pay for what you use
no management of start/stop

Uses
task execution
running a script
memcache

Pattern
start: load up state
handle requests
shutdown: write out state

Scaling

How does your backend scale?
offline

you control throughput
hit limits = slower processing
resize = pause, resume

online
you're (usually) not in control
hit limits = site is broken
resize = site is down

Monitor resource usage
Instances Console
runtime.cpu_usage()
runtime.memory_usage()

Scaling

Default: take some downtime
update causes stop
brief downtime window
minimize shutdown time
minimize load time

Better: routing
server-1, server-2
flip away, resize, flip back
canaries, staging

Best: options: dynamic
custom routing logic
balance over N at a time
initialize via script

Startup

/_ah/start
sent by App Engine
to initialize the process
can run indefinitely

differences
resident

at start time
automatic restart

dynamic
at request time
no automatic restart

Shutdown

Polite Shutdown
30s notice
can checkpoint state
examples

machine maintenance
App Engine maintenance
scheduling change

Hard Shutdown
zero notice
examples

machine failure
datacenter failure
exceeded memory limit

Shutdown

Shutdown

Runtime API
used to persist state when shutdown occurs
two methods

check for shutdown (polling)
register shutdown callback

Shutdown

Runtime API
used to persist state when shutdown occurs
two methods

check for shutdown (polling)
register shutdown callback

 from google.appengine.api import runtime

 def checkpoint():
 memory.write()

 while True:
 work(period=10)
 if runtime.is_shutting_down():
 checkpoint()
 break

Shutdown

Runtime API
used to persist state when shutdown occurs
two methods

check for shutdown (polling)
register shutdown callback

 from google.appengine.api import runtime

 def checkpoint():
 memory.write()

 runtime.set_shutdown_hook(checkpoint)
 work(period=86400)

Logging

Logs are flushed periodically
Auto

 from google.appengine.api import logservice
 logservice.AUTOFLUSH_EVERY_BYTES
 logservice.AUTOFLUSH_EVERY_LINES
 logservice.AUTOFLUSH_EVERY_SECONDS

Manual
 logservice.flush()

Fail-Fast

For sophisticated clients
perform own queuing
perform own retries
tolerant of failure
want immediate notification

Examples
AJAX client
mobile apps
external queues

Server-side
options: failfast

Client-side
X-AppEngine-FailFast: true

Message Passing

How to communicate between instances?
URLFetch

send message = make request
problem: single-threaded runtimes

Memcache
both read/write to cache entries

Datastore
instance A: write an entity
instance B: read an entity

Task Queues
task = message
each instance has a push/pull queue

Task Queues

Perfect for working with Tasks
run tasks forever
async message passing
batching w/pull queues

Push Queues
target directive in queues.yaml

target parameter to taskqueue.add()
Pull Queues

 queue.add(taskqueue.Task(
 method='PULL', ...))
 queue.lease_tasks(3600, 10)

Talk: Putting Task Queues to Work
http://goo.gl/TiNIb

http://goo.gl/TiNIb

Code & Handlers

Same directory
code, handlers shared
hide backends with login: admin

Two directories: app, backends
separate code, handlers for backends
no risk of exposing Backend logic in App

N+1 directories
each app version, backend
when code is substantially different
3rd-party backends

 Caveats

Configuration Limits

Limits
app: 5 backends
app: 10GB of backends
backend: 20 instances
backend: 10GB
10GB combinations

B8x10
B4x20
B8x5 + B4x10
B8x5 + B4x5 + B2x10

Caveats

API deadlines apply
urlfetch: 5s default, up to 10s
datastore: 30s

Size limits apply
HTTP: 32MB requests
urlfetch: 1MB request, 32MB response
memcache: 1MB objects
Blobstore: 2GB objects, 1MB response
Mail: 10MB send/receive
Tasks: 100KB

Caveats

No uptime guarantee
best-effort service
expect polite and hard shutdown
various causes

Examples
software bugs
hardware failures
emergencies

Talk: Life in App Engine Production
http://goo.gl/RdsKv

http://goo.gl/RdsKv

 The Future

The Future

Better scaling
auto-scaling
scaling API

Better updates
rolling updates
online updates

Better concurrency
java background threads
python concurrency

Better configuration
separate handlers
versioning

The Future

Better uptime
fewer restarts
uptime statistics

API Integrations
Channel, XMPP
Mail
MapReduce

More power
new instance classes
larger API calls
longer API deadlines

Streamed responses
Sockets API

Recap: App Engine Redefined

Application
30-second requsts
dynamic scaling
lightweight instances

Backends
long-running requests
max instance count
up to 1GB, 4.8GHz

Both
easy to configure
full production support
managed by Google

