

App Engine MapReduce

Mike Aizatsky
11 May 2011

 Hashtags: #io2011 #AppEngine
 Feedback: http://goo.gl/SnV2i

Agenda

● MapReduce Computational Model

● Mapper library

● Announcement

● Technical bits:

○ Files API

○ User-space shuffling

● MapReduce & Pipeline API

● Examples and Demos

MapReduce Computational Model

MapReduce

● A model to do efficient distributed computing over large
data sets.

● Used at Google for years

● Every project uses MapReduce!

MapReduce Computational Model

Map

● �Input: user data

● Output: (key, value) pairs

● User code

Shuffle

● Collates value with the
same key

● �Input: (key, value) pairs

● Output: (key, [value]) pairs

● No user code

Reduce

● �Input: (key, [value]) pairs

● Output: user data

● User code

MapReduce Computational Model

Common App Engine Approach

● Take what works for us at Google

● Give it to people

App Engine & Google's MapReduce

● Additional scaling dimension:

○ Lots and lots of applications

○ Many of them will run MapReduce at the same time

● Isolation: application shouldn't influence performance of
the other

App Engine & Google's MapReduce

● Rate limiting: you don't want to burn all day's resources
in 15min and kill your online traffic

● Very slow execution: free apps want to go really slow,
staying under their resource limint

● Protection: from malicious App Engine users

Mapper

Mapper Library

● Released at Google I/O 2010

● Heavily used by developers outside and inside Google
(admin console, new indexer pipeline, etc.)

● Has seen lots of improvements since

Mapper Library Improvements

● Control API - start your jobs programmatically (and
transactionally)

● Custom mutation pools - batch work between map
function calls

● Namespaces support - iterate over data in different
namespaces or over namespaces themselves

● Better sharding with scatter indices

● And more!

Mapper => MapReduce?

● Storage system for intermediate data:

○ Files API, released in 1.4.3 (March 2011)

● Shuffler

● Lots of glue code

Launching Shuffler Functionality

● In-memory, user-space, task-driven shuffle for small
(100Mb) datasets.

● Trusted testers access to big shuffler.

● All the integration pieces needed to run your own
mapreduce jobs are part of Mapper library.

● Mapper library => Mapreduce library!

● Python today, Java soon.

http://mapreduce.appspot.com

Examples

Example 1: Word Count

Map
def map(line):
 for w in clean(line).split():
 yield (w, '')

Reduce
def reduce(key, values):
 yield (key, len(values))

Zed's dead, baby, Zed's dead!

('zed's', ''), ('dead', ''), ('baby',
''), ('zed's', ''), ('dead', '')

('zed's', ['', '']), ('dead', ['', '']),
('baby', [''])

('zed's', 2), ('dead', 2'),
('baby', 1)

Demo

Example 2: Inverse Index

Map
def map(line, filename):
 for w in clean(line).split():
 yield (w, filename)

Reduce
def reduce(key, values):
 yield (key, list(set(values)))

Demo

MapReduce: Technical Bits

Technical Bits

● Files API: solution to MapReduce storage problem

● User-space shuffler

Files API

Mapreduce Storage

● Mapreduce jobs generate lots of intermediate data.

● Datastore: expensive, 1MB entity limit

● Blobstore: read-only

● Memcache: small, volatile

Files API

● Familiar, files-like interface to various virtual file
systems.

● Released in 1.4.3, integrated with Mapper library.

● Considered to be a low-level API.

Files API

● Files have two states: writable and readable.

● Start in writable. Moved to readable by "finalization".

● Can't read writable, can't write to readable.

● Write is append-only, atomic and fully serializable
between concurrent clients.

● Concrete filesystems might have their own reliability
constraints and/or additional APIs.

Blobstore Filesystem

● Write directly to blobstore.

● Files can be >2G.

● Finalized files are durable.

● Writable files are not (just restart your MapReduce)

● Can fetch a blob key for finalized files and use blobstore
api.

Blobstore Filesystem Python Example

from google.appengine.api import files
from __future__ import with_statement

Create the file.
file_name = files.blobstore.create()
Open the file for append.
with files.open(file_name, 'a') as f:
 f.write('data')

All data is in. Finalize the file.
files.finalize(file_name)

Blobstore Filesystem Python Example

Open the file for read.
with files.open(file_name, 'r') as f:
 data = f.read(4)

Fetch blobkey for blobstore api.
blob_key = files.blobstore.get_blob_key(file_name)

Mapper Integration

mapreduce.yaml
...
mapper:
output_writer: mapreduce.output_writers.
BlobstoreOutputWriters

Handler function
def map(entity):
 yield entity.to_csv_line() + '\n'

Low-level Features

● Exclusive locks: files can be opened exclusively by a
single client only.

● Sequence keys: each write can have a "sequence key"
attached. Our backends make sure that they only
increase.

Future Plans

● "Tempfile" file system: much faster, much cheaper, but
not durable, several days of storage only (geared
specifically towards MapReduce)

● Integrations with other Google storage technologies and
other reliability guarantees

User-Space Shuffler

User-Space Shuffler

● Consolidates values for the same key together.
● [(key, value)] => [(key, [value])]

● Should be reasonably fast, scalable and efficient.

● User-space: full source code, no new AppEngine
components.

Take 1

● Load all data into memory

● Sort

● Read sorted array

Take 1

Take 1 Properties

● Memory-bound

● No parallelism

Take 2

● Sort chunks of data and store them back to Files API

● Merge-sort all chunks (or merge-read)

Take 2

Take 2 Properties

● No longer memory-bound

● Sorting is parallel

● Merge phase is not parallel

● Difficult (and slow) to read from too many files

Take 3

● Shard mapper output by key hash code

● Sort each shard into chunks

● Merge-read each shard

Take 3

Take 3 Properties

● No longer memory-bound

● Sorting is parallel

● Merge phase is now parallel

● This is the shuffler we release today.

MapReduce & Pipeline

Pipeline API

● New API to chain complex work together.

● A glue which holds Mapper + Shuffler + Reducer
together.

● MapReduce library is fully integrated with Pipeline.

● For in-depth look visit "Large-scale Data Analysis Using
the App Engine Pipeline API" talk later today.

More Complex Example

Example 3: Distinguishing Phrases

Map
def map(text, filename):
 for words in ngrams(text):
 yield (words, filename)

Reduce
def reduce(key, values):
if len(values) < 10:
return
for filename, count in count_occurences(values):
if count > len(values) / 2:
yield (key, filename)

Demo

Summary

● Small & Medium MapReduce jobs can be run by
anyone today!

● Contact us for getting access to Large MapReduce
jobs.

http://mapreduce.appspot.com

Questions?

 Hashtags: #io2011 #AppEngine
 Feedback: http://goo.gl/SnV2i

