
1Thursday, May 12, 2011



High Performance GWT
Architecting for Speed
David Chandler, John Labanca
May 10-11, 2011

Hashtags:   #io2011 #DevTools

Feedback:  http://goo.gl/xZ9da

2Thursday, May 12, 2011

http://goo.gl/xZ9da
http://goo.gl/xZ9da


Agenda
• Why does speed matter?
• 5 performance pitfalls
• Cell widgets
• Code splitting with Activities and Places 
• Compiler tips

3

3Thursday, May 12, 2011



Agenda
• Why does speed matter?
• 5 performance pitfalls
• Cell widgets
• Code splitting with Activities and Places 
• Compiler tips

4

4Thursday, May 12, 2011



Slow site == bad

5

http://www.oscon.com/oscon2009/public/schedule/detail/10433

Exit rate vs. load time

5Thursday, May 12, 2011

http://www.oscon.com/oscon2009/public/schedule/detail/10433
http://www.oscon.com/oscon2009/public/schedule/detail/10433


Why does speed matter?
• Once upon a time...

– Google users wanted 30 search results instead of 10
– Time to first results went from 0.4s to 0.9s (+0.5s)
– First result page searches declined 25% in 6 weeeks
– That would be $2.5B drop in revenues!

6

6Thursday, May 12, 2011



Agenda
• Why does speed matter?
• 5 performance pitfalls
• Cell widgets
• Code splitting with Activities and Places 
• Compiler tips

7

7Thursday, May 12, 2011



#1 Don’t lose the user at startup
• HTTP requests are the slowest thing you can do in the browser
• Use ClientBundle to minimize trips for images, CSS
• Prefetch data needed at load time

– Use dynamic host page (JSP, etc.) and write JS variables into the page
– Read them with JSNI or the GWT Dictionary class
– http://code.google.com/webtoolkit/articles/dynamic_host_page.html

8

8Thursday, May 12, 2011

http://code.google.com/webtoolkit/articles/dynamic_host_page.html
http://code.google.com/webtoolkit/articles/dynamic_host_page.html


#2 Don’t lock up the browser

• JavaScript is single threaded
• Use Scheduler.scheduleDeferred()

– Runs after browser event loop
– Keeps thread free to respond to events
– Sometimes required as workaround to focus / layout issues

• For repetitive UI work
– scheduleFixedPeriod() instead of a for loop
– scheduleFinally()

• executes before repaint / event loop
• good for coalescing (ex: 5 RPC calls, only last one matters to UI)
• can use to combine DOM operations to reduce flicker

9

9Thursday, May 12, 2011



#3 Don’t make two trips when one will do
• Every server trip adds latency
• With GWT-RPC, batch requests using Command pattern

– Smart dispatcher can collate multiple calls to the same service (common at startup time)
– http://turbomanage.wordpress.com/2010/07/12/caching-batching-dispatcher-for-gwt-dispatch/
– http://turbomanage.wordpress.com/2010/07/16/dispatchqueue/

• RequestFactory can batch requests
– within a service (GWT 2.3) and across services (GWT 2.4, see RequestContext.append())
– requestContext.method1().to(new Receiver<T>(){...});
– requestContext.method2().to(new Receiver<T>(){...});
– requestContext.fire(new Receiver<Void>(){...}); //called only 1x

10

10Thursday, May 12, 2011

http://turbomanage.wordpress.com/2010/07/12/caching-batching-dispatcher-for-gwt-dispatch/
http://turbomanage.wordpress.com/2010/07/12/caching-batching-dispatcher-for-gwt-dispatch/
http://turbomanage.wordpress.com/2010/07/16/dispatchqueue/
http://turbomanage.wordpress.com/2010/07/16/dispatchqueue/


#4 Watch out for RPC type explosion
• GWT-RPC supports polymorphism
• Generates serializer / deserializer for each subtype
• List<Foo> as RPC argument or return type

– Results in ArrayList, LinkedList, Stack, Vector, ...
– Slows down compilation

• GWT-RPC recommendations
– Prefer concrete types (ArrayList) to interfaces (List)
– Limit use of polymorphism with GWT-RPC
– Can blacklist RPC types (see issue 4438)
– Consider RequestFactory instead

• Will support polymorphism in a way that doesn’t cause type explosions

11

11Thursday, May 12, 2011



#5 Don’t use a Widget when HTML will do
• Widgets have overhead
• Use UiBinder to replace Widgets with HTML

– when don’t need to respond to events
– or when events can be caught by a parent Widget
– caution: can’t add Widgets to HTML elements, so leaf Widgets require a parent Widget hierarchy to 

the top
– new LayoutPanels more efficient than previous panels

• Layout mostly delegated to browser
• Less use of tables (except TabLayoutPanel)

• For lists, tables, and trees
– Use the new Cell widgets

12

12Thursday, May 12, 2011



Agenda
• Why does speed matter?
• 5 performance pitfalls
• Cell widgets
• Code splitting with Activities and Places 
• Compiler tips

13

13Thursday, May 12, 2011



Cell Widgets
• What is a Cell?
• CellTable Overview
• CellTable Examples

14

14Thursday, May 12, 2011



Cell

• Cells are Widget flyweights
– Render content as HTML strings
– Handle events for multiple DOM instances

• Benefits
– Decrease overhead versus widget
– Render data sets as a single HTML string

15

15Thursday, May 12, 2011



CellTable
• Render large data sets as a single HTML string
• Features

– Paging / data push
– Multiple row selection
– Column sorting
– Fixed column widths using natural layout
– Keyboard navigation

• Planned Features
– Fixed headers with scrollable data area
– Fully customizable structure

• Child rows, colspans, rowspans

16

16Thursday, May 12, 2011



CellTable

17

http://goo.gl/akoJL

17Thursday, May 12, 2011

http://goo.gl/akoJL
http://goo.gl/akoJL


Creating a CellTable
1.Create a CellTable widget
2.Add columns

18

18Thursday, May 12, 2011



Creating a CellTable

19

CellTable<Contact> table = new CellTable<Contact>();

// Add a text column to show the name.
TextColumn<Contact> nameColumn = new TextColumn<Contact>() {
  @Override public String getValue(Contact object) {
    return object.name;
  }
};
table.addColumn(nameColumn, "Name");

// Add a date column to show the birthday.
DateCell dateCell = new DateCell();
Column<Contact, Date> dateColumn = new Coumn<Contact, Date>(dateCell) {
  @Override public Date getValue(Contact object) {
    return object.birthday;
  }
};
table.addColumn(dateColumn, "Birthday");

19Thursday, May 12, 2011



Static Data
Populating a CellTable

20

List<Contact> myData = getMyData(); 
cellTable.setRowData(myData);

20Thursday, May 12, 2011



Populating a CellTable

21

// Create a data provider.
AsyncDataProvider<Contact> dataProvider = new
    AsyncDataProvider<Contact>(){
  @Override
  protected void onRangeChanged(HasData<Contact> display) {
    final Range range = display.getVisibleRange();
    service.requestRows(range, new AsyncCallback<List<Contact>>() {
      public void onSuccess(List<Contact> result) {
        updateRowData(range.getStart(), result);
      }
    });
  }
}

// Connect the table to the data provider.
dataProvider.addDataDisplay(cellTable);

21Thursday, May 12, 2011



Updating with a CellTable

22

dateColumn.setFieldUpdater(new FieldUpdater<Contact, Date>() {
  public void update(final int index, final Contact contact,
                     final Date newBirthday) { 
    // Commit the change on the server.
    service.updateContact(contact, newBirthday,
      new AsyncCallback<Void>() {
        public void onSuccess() {
          // Update the local cache and redraw.
          contact.setBirthday(newBirthday);
          cellTable.redraw();
        }
    }
  }
}

22Thursday, May 12, 2011



Agenda
• Why does speed matter?
• 5 performance pitfalls
• Cell widgets
• Code splitting with Activities and Places
• Compiler tips

23

23Thursday, May 12, 2011



• Introduced in GWT 2.1
• Helps you manage history / bookmarks / back button
• What does it have to do with MVP?

– Strictly speaking, not a thing
– But many MVP frameworks offer place / history mgmt along with Presenter, View concepts

• Demo trunk/samples/expenses

Activities and Places

24

24Thursday, May 12, 2011



Place
• Place represents a bookmarkable state
• PlaceController makes back button / bookmarks work like users expect
• PlaceTokenizers map to / from String tokens on URL

25

25Thursday, May 12, 2011



Place

26

public class EditListPlace extends Place {
  private String token;

  public EditListPlace(String token) {
    this.token = token;
  }
  public String getToken() {
    return token;
  }
  public static class Tokenizer implements PlaceTokenizer<EditListPlace> {
    public EditListPlace getPlace(String token) {
      return new EditListPlace(token);
    }
    public String getToken(EditListPlace place) {
      return place.getToken();
    }
  }
}

26Thursday, May 12, 2011



PlaceHistoryMapper

/**
 * PlaceHistoryMapper interface is used to attach all places which the
 * PlaceHistoryHandler should be aware of. This is done via the @WithTokenizers
 * annotation or by extending PlaceHistoryMapperWithFactory and creating a
 * separate TokenizerFactory.
 */
@WithTokenizers({ ListsPlace.Tokenizer.class, EditListPlace.Tokenizer.class })
public interface AppPlaceHistoryMapper extends PlaceHistoryMapper
{
}

27

27Thursday, May 12, 2011



Places: moving parts

28

28Thursday, May 12, 2011



Places: Go to

29

29Thursday, May 12, 2011



Places: Back and forth

30

30Thursday, May 12, 2011



Activity
• Something the user is doing
• “wake up, set up, show up”
• Can automatically warn users before leaving
• Started / stopped by ActivityManager (per panel)
• Instantiates view (or obtains from factory)
• Can be a presenter, but higher level
• Can be associated with a Place

31

31Thursday, May 12, 2011



Activity

public class EditListActivity extends AbstractActivity
{
	 private EventBus eventBus;

	 public EditListActivity(EditListPlace editListPlace)
	 {
	 	 this.itemListToken = editListPlace.getToken();
	 }

	 @Override
	 public void start(final AcceptsOneWidget panel, EventBus eventBus)
	 {
	 	 this.eventBus = eventBus;

panel.setWidget(new EditListView());
}

}

32

32Thursday, May 12, 2011



ActivityMapper

33

public class AppActivityMapper implements ActivityMapper {

	 @Override
	 public Activity getActivity(Place place) {
	 	 if (place instanceof EditListPlace) {
	 	 	 return new EditListActivity((EditListPlace) place);
	 	 }
	 	 if (place instanceof ListsPlace)
	 	 {
	 	 	 return new ListsActivity();
	 	 }
	 	 return null;
	 }
}

33Thursday, May 12, 2011



ActivityMapper idioms

Disposable Activity, reusable view (makes for clean code)

    if (place instanceof FooPlace) {
      return new FooActivity(theOnlyFooView);
    }

Singleton Activity (Activity cleanup required, little perf benefit to reuse)

    if (place instanceof FooPlace) {
      theOnlyFooActivity.update((FooPlace) place);
      return theOnlyFooActivity;
    }

34

34Thursday, May 12, 2011



Using Places and Activities together

35

35Thursday, May 12, 2011



Strategies

36

36Thursday, May 12, 2011



Strategies

37

37Thursday, May 12, 2011



Strategies
• How to update multiple regions in response to Place change?
• Each region has its own 

– ActivityManager
– ActivityMapper

• onPlaceChange
– all ActivityManagers get notified
– activityMapper.getActivity(Place place) gets called for each ActivityManager
– resulting Activities each update their regions

38

38Thursday, May 12, 2011



Paradigms
• Places are disposable
• Activities may be, too
• Views

– could be re-created in response to each Place/Activity change
– but more efficient to construct once and
– obtain from a factory (or DI) in the Activity

• Significant performance benefit to reusing views, especially complex ones

39

39Thursday, May 12, 2011



Code splitting
• Allows you to defer code download until needed

• See also GWT’s AsyncProxy
• -compileReport

– Look in /extras dir for soycReport (Story Of Your Compile)

40

          GWT.runAsync(new RunAsyncCallback() {
            @Override
            public void onSuccess() {
             // Deferred code goes here
            }
            @Override
            public void onFailure(Throwable reason) {
              // TODO Auto-generated method stub
            }
          });

40Thursday, May 12, 2011



Code splitting with Activities and Places
• An Activity is a natural split point

– easy to understand
– not too big, not too small
– well proven on Google projects

• With GIN
– Use AsyncProvider to create your activities
– one possibility: getActivity(Place p) returns activityAsyncProvider.get()
– GIN generates the runAsync call for you

• Without GIN
– Activity start() method is a good place for the runAsync block, basic idea is to proxy the method 

through GWT’s AsyncProxy or similar
– work in progress, watch issue 5129, see also http://goo.gl/s59w4, http://goo.gl/2881K

41

41Thursday, May 12, 2011

http://goo.gl/s59w4
http://goo.gl/s59w4


Agenda
• Why does speed matter?
• 5 performance pitfalls
• Cell widgets
• Code splitting with Activities and Places 
• Compiler tips

42

42Thursday, May 12, 2011



Compile faster
• The problem: large GWT projects can take several minutes to compile
• -draftCompile

– Skip optimizations (not for production)

• Set only one user-agent in gwt.xml
– no need for all permutations during development
–  <set-property name="user.agent" value="safari"/>

• Reminder: avoid RPC type explosion

43

43Thursday, May 12, 2011



Compile faster: the numbers
• Spirodraw app (12 classes, no RPC)

44

All browsers Safari only

-compileReport 49.9s 30.5s

Standard compile 43.3s 27.7s

-draftCompile 35.2s 24.1s

44Thursday, May 12, 2011



Shrink JS (compiler flags)
• -XdisableClassMetadata

– Disables some java.lang.Class methods (e.g. getName())

• -XdisableCastChecking 
– Disables run-time checking of cast operations

• Careful!
– if you were using the features you disable, you’ll get JS exceptions
– compiler will not warn you
– instanceof will still work

• -compileReport (SOYC)
– “story of your compile” in /extra dir

45

45Thursday, May 12, 2011



Shrink JS (gwt.xml params)
<set-property name="compiler.stackMode" value="strip"/>

Removes client-side stack trace info (can reduce size up to 15%)

<set-configuration-property name="compiler.enum.obfuscate.names" value="true"/>
(only use if you’re not using enums as String values)

<set-configuration-property name="CssResource.obfuscationPrefix" value="empty"/>

See also
GWT FAQ
CompilerParameters.gwt.xml

46

46Thursday, May 12, 2011



Shrink JS: the numbers
• Spirodraw app, minimal casting, 1 enum

47

Compiler options Bytes Percent

NONE 283,187 Shrinkage

-XdisableClassMetadata 276,218 2.5%

-XdisableCastChecking 280,196 1.1%

Stack stripping 272,518 3.8%

Enum obfuscation 282,233 0.3%

ALL 261,705 7.6%

47Thursday, May 12, 2011



Summary
• Why does speed matter?
• 5 performance pitfalls
• Cell widgets
• Code splitting with Activities and Places 
• Compiler tips

48

48Thursday, May 12, 2011



Thank you!

49

http://code.google.com

Hashtags:   #io2011 #DevTools
Feedback:  http://goo.gl/xZ9da

49Thursday, May 12, 2011

http://code.google.com
http://code.google.com
http://goo.gl/xZ9da
http://goo.gl/xZ9da

