

More 9’s Please:
Under the Covers of the
High Replication Datastore
Matt Wilder
Alfred Fuller
2011-05-11

Hashtags: #io2011 #AppEngine

Feedback: http://goo.gl/l3ojJ

Who?

Alfred Fuller
•  Software Engineer

•  App Engine – Datastore

Matt Wilder
•  Site Reliability Engineer

•  Distributed Storage

3

Past Datastore talks (on YouTube)
2010 - Next Gen Queries
2009 - Building Scalable, Complex Apps on App Engine

2008 - Under the Covers of the Google App Engine Datastore

Outline
•  Datastore Overview

•  Datastore in Production
–  Common Case
–  Planned Maintenance

–  Unplanned Events

•  Lessons Learned

•  High Replication Tips

4

5

Datastore Types

Master / Slave High Replication

Released April 2008 January 2011

Replication Asynchronous Synchronous

Replicas 2

>2

Master Single None

…

GFS v2

Bigtable

Datastore Software Stack
•  App Engine Datastore

–  Schema-less storage
–  Advanced query engine

•  Megastore
–  Multi-row transactions

•  Across machines

•  Entity Groups

–  Simple indexes/queries
–  Strict schema

•  Bigtable
–  Distributed key/value store

•  Next gen distributed file system
6

Megastore

Datastore

Entity Group?
•  Logical grouping of entities

–  Parent/child key relationship

•  Unit of Transactionality
–  Transactions can only read/write entities in a single group

•  Unit of Consistency
–  Strong serial consistency

•  Will always Get an entity once Put

•  Never see part of a transaction

7

Entity
Group

E

E

E E

E Entity
Group

E

E

E E

E

Entity Group Example

8

Doc Blog

Post

User

Photo

Comment Revision

History

Comment Comment

Entity Group – Limitations
•  Throughput limited

–  At least 1 write / second
–  5-10 in practice

•  Write / Sec != Entity / Sec
–  Batch puts / transactions count as 1 write!

•  Arbitrary Size
–  10’s of Millions of entities

9

Concurrency Exception

Entity Group Example – User Centric

10

Doc Blog

Post

User

Photo

Comment

Revision

History

Comment Comment

11

Datastore – Consistency

Master / Slave High Replication

Put / Delete Serial Consistency Serial Consistency

Get / Ancestor Query Strong Strong

Non-Ancestor Query
(Entity Group unknown) Strong

SELECT * FROM Comment
 WHERE UserId = user.id()

SELECT * FROM Comment
 WHERE ancestor IS user.key()

Eventual

Common Case - Master / Slave
•  Write

–  Write local (master)
–  Asynchronous replication

•  Read
–  Read local (master)

12

Master Slave

Bigtable A

App
Read Write

Datacenter A

(master)

Bigtable B

Datacenter B

(slave)

Asynchronous Replication

13

Common Case – High Replication
•  Write

–  Write to at least a majority
•  Two phase

•  Minority may not get write synchronously

–  Asynchronous replication
–  On demand replication

•  Read
–  Read

•  Fastest (usually local)

•  Catch up on demand

14

App

High Replication

15

Bigtable A

App
Read Write

Bigtable B

Read Write

Bigtable C

Datacenter A Datacenter B Datacenter C

Prepare
Accept

Asynchronous Replication

App

High Replication

16

Bigtable A

App
Read Write

Bigtable B

Read Write

Bigtable C

Datacenter A Datacenter B Datacenter C

Read

17

Datastore – Performance
NOTE: These numbers are approximate

Master / Slave High Replication

Average Latency
Read 15 ms 15 ms

Write 20 ms 45 ms

Average Error Rate
Read .1%+ .001%

Write .1%+ .001%

99.9% = Three 9’s

= 8.7 hours/year

99.999% = Five 9’s

= 5 minutes/year

Planned Maintenance

Cause

•  Common infrastructure updates
–  Network
–  Power/Cooling

–  Distributed Storage

•  Why?
–  Not all services support in place upgrades

–  Architectural services (power, cooling) must be taken offline

18

Planned Maintenance

Effect: Master/Slave

•  Maintenance Period
–  Switch Masters
–  1 hour of read-only datastore

•  Semi-automated procedure (requires engineer)

•  Maintenance windows

19

Master Slave – Planned Maintenance

Bigtable A

App
Read Write

Datacenter A

(master)

Bigtable B

Read Write

Datacenter B

(slave)

Asynchronous Replication

Read-only

Flush Replication

20

Planned Maintenance

Effect: High Replication

•  Seamless Migration
–  Applications serve primarily in 1 datacenter
–  Switching is almost transparent

•  Memcache flush + 1 min no-caching

21

App

High Replication – Planned Maintenance

22

Bigtable A

App
Write

Bigtable B

Read Write

Bigtable C

Datacenter A Datacenter B Datacenter C

Read
Automated Drain

Unplanned Issues – Local Failures

Cause

•  Expected
–  Tablet split
–  Tablet migration

•  Unexpected
–  Inconsistent Bigtable Performance

•  Sick tablet server

•  Shared storage

•  Isolation

23

a comic by Ikai Lan

Unplanned Issues – Local Failures

Effect: Master/Slave

•  Local Unavailability
–  App data unavailable
–  DeadlineExceeded

–  Request queue can back up

–  Clustered in space and time
–  Status site still green

•  http://code.google.com/status/appengine

24

Master Slave – Local Failures

Bigtable A

App
Read Write

Datacenter A

(master)

Bigtable B

Datacenter B

(slave)

Read

25

Unplanned Issues – Local Failures

Effect: High Replication

26

No impact on performance!

App

High Replication – Local Failures

27

Bigtable A

App
Read Write

Bigtable B

Read Write

Bigtable C

Datacenter A Datacenter B Datacenter C

Read

Unplanned Issues – Global Failures

Cause

•  Network

•  Power

•  Shared Infrastructure
–  Bigtable
–  Distributed Storage

–  Cluster Management

28

Unplanned Issues – Global Failures

Effect: Master/Slave

•  Complete Unavailability
–  Not just the Datastore

•  Emergency Failover
–  Temporary data loss

•  Unreplicated data

•  Partially replicated data

29

Master Slave – Global Failure

Bigtable A

App
Read Write

Datacenter A

(master)

Bigtable B

Read Write

Datacenter B

(slave)

Emergency Failover!

30

Unplanned Issues – Global Failures

Effect: High Replication

•  Brief Unavailability
–  On the order of minutes
–  Automatic infrastructure drain

•  Data Integrity Maintained

•  Redundancy Maintained
–  Can lose multiple datacenters

31

App

High Replication – Global Failure

32

Bigtable A

App
Read Write

Bigtable B

Read Write

Bigtable C

Datacenter A Datacenter B Datacenter C

Read
Automated Drain

Lessons Learned
•  Expect the unexpected!

–  Global Failures are never expected
–  The improbable is probable at scale

•  Consistent performance > low latency
–  Low latency + inconsistent performance != low latency
–  Developers can program around slower if expected

•  Fully-automatic failure handling means less downtime
–  Faster reaction time

–  Better fault recovery

•  Unavailability is never good
–  Small percentage at Google’s scale has a big impact

33

High Replication Recap
•  Slightly higher write latency
•  Slightly less global consistency

•  Fault Tolerant to a Fault
–  Geographically distributed

–  Resilient to catastrophic failure

–  Many more 9’s!

•  Reduced price
•  Default ON!

•  What’s next?
–  Improved migration tools

34

Dealing with Eventual Consistency
•  Code audit to find global queries

–  Everything else is strongly consistent

•  Accept it
–  A lot of global queries don’t need strong consistency

•  Avoid it
–  Use larger entity groups + batch writes

•  Work around it
–  Mix datastore results

•  Ancestor Query + Global Query

•  Memcache

–  Session Cache (keep track of recent writes for a user)

35

Questions?

Hashtags: #io2011 #AppEngine
Feedback: http://goo.gl/l3ojJ

