

More 9’s Please:
Under the Covers of the
High Replication Datastore

Matt Wilder
Alfred Fuller
2011-05-11

Google Hl(®)
Hashtags: #i02011 #AppEngine % "E!
Feedback: http://goo.gl/I30jJ (5] :

Who??

Alfred Fuller Matt Wilder
« Software Engineer « Site Reliability Engineer

* App Engine — Datastore « Distributed Storage

Past Datastore talks (on YouTube)
2010 - Next Gen Queries
2009 - Building Scalable, Complex Apps on App Engine
2008 - Under the Covers of the Google App Engine Datastore

3 Google Hle)

Outline

 Datastore Overview

o Datastore in Production
— Common Case
— Planned Maintenance

— Unplanned Events
 Lessons Learned

* High Replication Tips

Google Hle)

Datastore Types

Master / Slave

High Replication

Released April 2008 January 2011
Replication Asynchronous Synchronous
Replicas 2 -2
Master Single None
| Google @@
I

Datastore Software Stack

* App Engine Datastore

Datastore
— Schema-less storage

Megastore

— Advanced query engine

* Megastore

— Multi-row transactions
* Across machines
» Entity Groups

— Simple indexes/queries

— Strict schema
* Bigtable
— Distributed key/value store

* Next gen distributed file system

6 Google Hle)

Entity Group?

 Logical grouping of entities
— Parent/child key relationship
 Unit of Transactionality

— Transactions can only read/write entities in a single group

 Unit of Consistency

— Strong serial consistency
« Will always Get an entity once Put

» Never see part of a transaction

- =)

Entity E @

 Group N~—

E W @
: <> (o) %

| Google W@

Entity Group Example

Comment Comment

- >~
8 Google Hle)

Comment Revision

History

Entity Group — Limitations ¢, ¢, rency Exceptios

MEIS £
M mil:

* Throughput limited

w1 I
il

— At least 1 write / second

I
1

YVVVY

|
]

— 5-10 in practice
» Write / Sec = Entity / Sec

— Batch puts / transactions count as 1 write!

 Arbitrary Size

— 10’s of Millions of entities

9 Google Hle)

Entity Group Example — User Centric

Comment Comment

Revision

History

Datastore — Consistency

11

Master / Slave High Replication

Put / Delete Serial Consistency Serial Consistency

Get / Ancestor Query

Strong Strong

Non-Ancestor Query
(Entity Group unknown)

ng Eventual

SELECT * FROM Comment
WHERE UserId = user.id()

SELECT * FROM Comment
WHERE ancestor IS user.key()

Google Hle)

Common Case - Master / Slave
 Write

— Write local (master)

— Asynchronous replication

 Read

— Read local (master)

12

Google Hle)

Master Slave

Datacenter A

(master)

Datacenter B

(slave)

App

Bigtable A

Asynchronous Replication

S~ .~

—
—

Bigtable B

S~ .

13

Google Hle)

Common Case — High Replication

* Write
— Write to at least a majority

 Two phase

« Minority may not get write synchronously
— Asynchronous replication
— On demand replication

 Read
— Read

» Fastest (usually local)

« Catch up on demand

14

Google Hle)

High Replication

Datacenter A Datacenter C Datacenter B
Prepare
App Accept
=3l

Asynchronous Replication

/]

&_//K_//

Bigtable A 1T Bigtable C 1

/

/

\
K_//

f Bigtable B

S~ .

15

Google Hle)

High Replication

Datacenter A Datacenter C Datacenter B
App App
; = =
Q N __— — /
\\ ‘
\ 4
\ B ///
! TSN N ~
~ A ~ A
Bigtable A 1T Bigtable C 17 Bigtable B
S~ - S~ - S~ .~
. Google Hle)

Datastore — Performance
NOTE: These numbers are approximate

Master / Slave | High Replication
Read 15 ms 15 ms
Average Latency
Write 20 ms 45 ms
Read 1%+ 001%
Average Error Rate
Write . 1%+ 001%
99.9% = Three 9's 99.999% = Five 9's
bé = 8.7 hours/year — = 5 minutes/year _
w \MM/

17

Google Hle)

Planned Maintenance

Cause

« Common infrastructure updates
— Network
— Power/Cooling
— Distributed Storage
* Why?
— Not all services support in place upgrades

— Architectural services (power, cooling) must be taken offline

. Google Hle)

Planned Maintenance

Effect: Master/Slave

 Maintenance Period
— Switch Masters
— 1 hour of read-only datastore

« Semi-automated procedure (requires engineer)

* Maintenance windows

19

Google Hle)

Master Slave — Planned Maintenance

Datacenter A

(master)

App

(Read] |wie])

T Flush Replication

~ A S R
- Asynchronous Replication-»>

Bigtable A npbbbbbbbabubt«

- W W W W A W W W W W OW W OW W W >

S~ .~

20

] |

Datacenter B

(slave)

Read

Write

Bigtable B

S~

_

Google Hle)

Planned Maintenance

Effect: High Replication

« Seamless Migration
— Applications serve primarily in 1 datacenter

— Switching is almost transparent

* Memcache flush + 1 min no-caching

21

Google Hle)

High Replication — Planned Maintenance

Datacenter A Datacenter C Datacenter B

Automated Drain App
Xt %
11—
8 ==
™ -
™ S~

¥//¥//

Bigtable A 1T Bigtable C 17 Bigtable B

. Google Hle)

Unplanned Issues — Local Failures

LTabl@‘r 3ot aﬁi{ﬁﬂ

Ay

Cause Tl
: 2z /
/ W aoH
* Expected -
— Tablet split [Tt sy Vi

— Tablet migration

* Unexpected

— Inconsistent Bigtable Performance
» Sick tablet server
» Shared storage

* |solation

a comic by lkai Lan

. Google Hle)

Unplanned Issues — Local Failures

Effect: Master/Slave

» Local Unavallability
— App data unavailable
— DeadlineExceeded

— Request queue can back up e
— Clustered in space and time
— Status site still green

 http://code.google.com/status/appengine

. Google Hle)

Master Slave — Local Failures

Datacenter A Datacenter B
(master) (slave)
App
y

\\
v v \\

— T < N
w ¥/—/
Bigtable A Bigtable B
. Google Hle)

Unplanned Issues — Local Failures

Effect: High Replication

No impact on performance!

26

Google Hle)

High Replication — Local Failures

Datacenter A

Datacenter C

Datacenter B

=
N 3
N
~—
Bigtable A 1 Bigtable C 11! Bigtable B
~— | | === | _
i Google Hle)

Unplanned Issues — Global Failures

Cause

 Network
 Power

 Shared Infrastructure

— Bigtable
— Distributed Storage

— Cluster Management

28

Google Hl(®)

Unplanned Issues — Global Failures

Effect: Master/Slave

» Complete Unavailability

— Not just the Datastore

 Emergency Failover

— Temporary data loss

* Unreplicated data

« Partially replicated data

. Google Hle)

Master Slave — Global Failure

Datacenter A Datacenter B
(master) (slave)
App
A A
Emergency Failover!
v v v v
— — T
k// K_//
BigtableA (""" T T T T TS Bigtable B
~_ - S~ -
. Google {JI{®)
]]

Unplanned Issues — Global Failures

Effect: High Replication

 Brief Unavailability
— On the order of minutes

— Automatic infrastructure drain
 Data Integrity Maintained

* Redundancy Maintained

— Can lose multiple datacenters

31

Google Hle)

High Replication — Global Failure

Datacenter A

Datacenter C

Datacenter B

App

Bigtable A

S~ .~

Automated Drain

>

SN

Bigtable C

S~ .~

Bigtable B

/

32

Google Hle)

Lessons Learned

33

Expect the unexpected!

— Global Failures are never expected

— The improbable is probable at scale

Consistent performance > low latency

— Low latency + inconsistent performance != low latency
— Developers can program around slower if expected
Fully-automatic failure handling means less downtime
— Faster reaction time

— Better fault recovery

Unavailability is never good

— Small percentage at Google’s scale has a big impact

Google Hle)

High Replication Recap

 Slightly higher write latency
 Slightly less global consistency
« Fault Tolerant to a Fault

— Geographically distributed

— Resilient to catastrophic failure

— Many more 9’s!

Storage Options (Advanced):
Google App Engine datastore options.

© High Replication (default)

.
 Reduced price
Uses a more highly replicated Datastore that makes use of a system based on the Paxos algorithm to synchronously replicate data across muttiple locations simuttaneously. Offers the

highest level of availability for reads and writes, at the cost of higher latency writes, eventual consistency for most queries, and approximately three times the storage and CPU cost of
Y D efa u It O N l the Master/Slave option.
H ~

) Master/Slave

Uses a master-slave replication system, which asynchronously replicates data as you write it to another physical datacenter. Since only one datacenter is the master for writing at any
given time, this option offers strong consistency for all reads and queries, at the cost of periods of temporary unavailability during datacenter issues or moves. Offers the lowest
storage and CPU costs for storing data.

 What’s next?

— Improved migration tools

. Google Hle)

Dealing with Eventual Consistency

» Code audit to find global queries
— Everything else is strongly consistent
» Accept it
— A lot of global queries don’t need strong consistency
* Avoid it
— Use larger entity groups + batch writes
* Work around it

— Mix datastore results
* Ancestor Query + Global Query

» Memcache

— Session Cache (keep track of recent writes for a user)

35

Google Hle)

Questions?

Hashtags: #i02011 #AppEngine
Feedback: http://goo.gl/I30jJ

