


YouTube's iframe Player:
The Future of Embedding
Jeffrey Posnick, Greg Schechter, and Jarek Wilkiewicz
May 11, 2011



Session Overview

What is the iframe player?
HTML5 playback in detail.
Details of writing and exposing a JavaScript API for 
controlling the player.
Comparing the iframe API to the AS3 player API.
iframe player API example application.

Hashtags:  #io2011 #YouTube
Feedback:  http://goo.gl/fdY2L



Session Overview

What is the iframe player?
HTML5 playback in detail.
Details of writing and exposing a JavaScript API for 
controlling the player.
Comparing the iframe API to the AS3 player API.
iframe player API example application.



“Let the embed, not the embedder 
figure it out!” 

Video on the Web is getting complex



What is the iframe player? 

Problem: platform fragmentation
PC vs Mobile
Encoding: H.263, H.264, WebM/VP8, ...
RTSP/AS2/AS3/HTML5

Solution: <iframe> player
Let the embed, not the embedder figure it out
Common API independent of video technology

<iframe class="youtube-player" type="text/html" 
width="640" height="385" src="http://www.youtube.
com/embed/ID>
</iframe>



Session Overview

What is the iframe player?
HTML5 playback in detail.
Details of writing and exposing a JavaScript API for 
controlling the player.
Comparing the iframe API to the AS3 player API.
iframe player API example application.



Why HTML5?
HTML5 vs. Flash

Performance

Accessibility

Device-ability

Features

Security

Embeds API



Why HTML5?
Features

http://www.flickr.
com/photos/zipckr/4624150058/

http://www.flickr.com/photos/zipckr/4624150058/
http://www.flickr.com/photos/zipckr/4624150058/


Why HTML5?
Features

Robust video streaming



Why HTML5?
Features

Robust video streaming

Fine control over buffering and dynamic quality control

Jump to any part of the video



Why HTML5?
Features

Robust video streaming

Fine control over buffering and dynamic quality control

Jump to any part of the video
Content protection



Why HTML5?
Features

Robust video streaming

Fine control over buffering and dynamic quality control

Jump to any part of the video
Content protection

RTMPE protocol / Flash Access



Why HTML5?
Features

Robust video streaming

Fine control over buffering and dynamic quality control

Jump to any part of the video
Content protection

RTMPE protocol / Flash Access
Fullscreen video



Why HTML5?
Features

Robust video streaming

Fine control over buffering and dynamic quality control

Jump to any part of the video
Content protection

RTMPE protocol / Flash Access
Fullscreen video

We need HD cat videos!
WebKit has a JavaScript API



Why HTML5?
WebKit Fullscreen API

var elem = document.getElementById("my-element");
elem.onwebkitfullscreenchange = function() {
console.log ("We went fullscreen!");
};
elem.webkitRequestFullScreen();



Why HTML5?
Features

Robust video streaming

Fine control over buffering and dynamic quality control

Jump to any part of the video
Content protection

RTMPE protocol / Flash Access
Fullscreen video

We need HD cat videos!
WebKit has a JavaScript API

Camera & Microphone Access



Why HTML5?
Features

Robust video streaming

Fine control over buffering and dynamic quality control

Jump to any part of the video
Content protection

RTMPE protocol / Flash Access
Fullscreen video

We need HD cat videos!
WebKit has a JavaScript API

Camera & Microphone Access
Need to record to YouTube



Why HTML5?
Features

Robust video streaming

Fine control over buffering and dynamic quality control

Jump to any part of the video
Content protection

RTMPE protocol / Flash Access
Fullscreen video

We need HD cat videos!
WebKit has a JavaScript API

Camera & Microphone Access
Need to record to YouTube

Formats



Why HTML5?
Features

Robust video streaming

Fine control over buffering and dynamic quality control

Jump to any part of the video
Content protection

RTMPE protocol / Flash Access
Fullscreen video

We need HD cat videos!
WebKit has a JavaScript API

Camera & Microphone Access
Need to record to YouTube

Formats
Need to support both H.264 and WebM



Why HTML5?
<video> Expectations

Open source technology

Browser / Player / Codec



Why HTML5?
<video> Expectations

Open source technology

Browser / Player / Codec
Lower latency

No plug-in instantiation



Why HTML5?
<video> Expectations

Open source technology

Browser / Player / Codec
Lower latency

No plug-in instantiation
Better performance and fidelity



Why HTML5?
<video> Expectations

Open source technology

Browser / Player / Codec
Lower latency

No plug-in instantiation
Better performance and fidelity
Accessibility



Why HTML5?
<video> Expectations

http://imgs.xkcd.com/comics/in_ur_reality.png



Why HTML5?
<video> Expectations

Open source technology

Browser / Player / Codec
Lower latency

No plug-in instantiation
Better performance and fidelity
Accessibility

User agents can have special video handling



Why HTML5?
Device-ability

By cambodia4kidsorg
http://www.flickr.com/photos/cambodia4kidsorg/5228268296/

http://www.flickr.com/photos/cambodia4kidsorg/
http://www.flickr.com/photos/cambodia4kidsorg/5228268296/


Why HTML5?
HTML5 Capable Browsers



Why HTML5?
Flash Support vs. HTML5 Support



Why HTML5?
YouTube Data API Usage for Flash vs. HTML5 Devices



Why HTML5?



When HTML5?



When HTML5?

Primary goal: Recover playbacks that would be lost without 
Flash.



When HTML5?

Primary goal: Recover playbacks that would be lost without 
Flash.

Our solution:

<iframe type="text/html"
  width="640"
  height="385"
  frameborder="0"
  src="http://www.youtube.com/embed/VIDEO_ID"
  allowfullscreen>
</iframe>



When HTML5?
<iframe> Embed

Give the user HTML5 or Flash based on device and user 
preferences.

Allows for better mobile support.

Offers an "it just works" experience.



When HTML5?
When does the user get HTML5?



When HTML5?
Detecting HTML5

var videoElement = document.createElement('video');
if (videoElement && videoElement.canPlayType &&
   (videoElement.canPlayType('video/mp4; codecs="avc1.42001E, mp4a.40.2"') || 
    videoElement.canPlayType('video/webm; codecs="vp8.0, vorbis"'))) {
  // Sweet, we can use HTML5!
}



When HTML5?
When does the user get HTML5?



Performance

By Two Hawk's Eye
http://www.flickr.com/photos/mycoolpics/92033686/

http://www.flickr.com/photos/jadaciuk/3235413750/
http://www.flickr.com/photos/mycoolpics/
http://www.flickr.com/photos/mycoolpics/92033686/


Performance
Player Start Time

500ms

Flash

HTML5



Performance
Time Until Thumbnail is Visible

Flash - 5.1s

HTML5 - 1.4s

*Collected data shows faster load times than this control 
environment, but the comparison is actuate.



Session Overview

What is the iframe player?
HTML5 playback in detail.
Details of writing and exposing a JavaScript API for 
controlling the player.
Comparing the iframe API to the AS3 player API.
iframe player API example application.



The JavaScript API
Communication



The JavaScript API
Communication

Poll the URL fragment?
            http://youtube.com/embed/video_id#fragment



The JavaScript API
Communication

Poll the URL fragment?
http://youtube.com/embed/video_id#fragment

Messages are one dimensional.
Polling eats up CPU and is not instant.
Both directions of communication use the same 
fragment.



The JavaScript API
Communication

Better idea: PostMessage API.
someWindow.postMessage(message, targetOrigin);
 



The JavaScript API
Communication

Better idea: PostMessage API.
someWindow.postMessage(message, targetOrigin);

Uses JSON for native encoding and decoding of data.
No polling.
Native event listeners.
Communications are sandboxed per-window.
Calls are asynchronous.



Session Overview

What is the iframe player?
HTML5 playback in detail.
Details of writing and exposing a JavaScript API for 
controlling the player.
Comparing the iframe API to the AS3 player API.
iframe player API example application.



Player Params
Action Script API
JavaScript API

Comparing the iframe API to the AS3 Player API
Three Ways to Control the Player



Comparing the iframe API to the AS3 Player API
Player Params 

Example 

<iframe class="youtube-player" type="text/html" 
width="640" height="385" src="http://www.youtube.com/embed/ID?
autoplay=1">
</iframe>

AS3/Flash implementation of iframe : pass through



Comparing the iframe API to the AS3 Player API
Not (Fully) Supported by HTML5 Player Yet

Autoplay - on iOS need to hit play (autoplay)
Captions (no ASR, can't force cc_load_policy)
Full screen (fs)
Annotations (iv_load_policy)
Related videos (rel)



Comparing the iframe API to the AS3 Player API
ActionScript API

Not applicable!
No ActionScript API for the iframe
Use Flash Player API
... but this won't work on iOS :(
Let's talk JavaScript



Comparing the iframe API to the AS3 Player API
JavaScript API

Player Init
Operations
Event Handling



Comparing the iframe API to the AS3 Player API
Player Init
//Load player api asynchronously.
var tag = document.createElement(
          'script');
tag.src = "http://www.youtube.com/
           player_api";
var firstScriptTag = document.
           getElementsByTagName(
           'script')[0];
firstScriptTag.parentNode.
           insertBefore(tag,
           firstScriptTag);
var player;

function onYouTubePlayerAPIReady() {
  player = new YT.Player('player', {
     height: '390', width: '640',
     videoId: 'exmwSxv7XJI',
     playerVars: { 'autoplay': 1},
     events: {
      'onReady': onPlayerReady,
      'onStateChange': 
               onPlayerStateChange
      }
  }); 
}

<script type="text/javascript" src="swfobject.js"
></script>  

var params = { allowScriptAccess: "always" };
var atts = { id: "myytplayer" };

swfobject.embedSWF("http://www.youtube.
com/e/exmwSxv7XJI?
enablejsapi=1&          playerapiid=ytplayer&autoplay=1",
"player", "640", "390", "8", null, null, params, atts);

function onYouTubePlayerReady(playerId) {
 ytplayer = document.getElementById(
          "myytplayer");    
 ytplayer.addEventListener(
          "onStateChange",     
          "onPlayerStateChange");
}



Comparing the iframe API to the AS3 Player API
JavaScript Operations

Functionality Example Supported

Queueing functions loadVideoById, 
cueVideoById

Playback controls and player settings seekTo, setVolume

Playback status getVideoBytesTotal

Playback quality getPlaybackQuality, 
setPlaybackQuality

Retrieving video information getDuration, 
getVideoEmbedCode

✓

✓

✓

✓

✓



Comparing the iframe API to the AS3 Player API
JavaScript Event Handling
function onYouTubePlayerAPIReady() {
  var player;
  player = new YT.Player('player', {
    width: 1280,
    height: 720,
    videoId: 'u1zgFlCw8Aw',
    events: {
      'onReady': onPlayerReady,
      'onPlaybackQualityChange': onPlayerPlaybackQualityChange,
      'onStateChange': onPlayerStateChange,
      'onError': onPlayerError
    }
  });
}

OR (AS3 player, registration also supported by iframe API)

function onYouTubePlayerReady(playerId) {
  player = document.getElementById(playerId);
  player.addEventListener('onReady','onPlayerReady');
  player.addEventListener('onPlaybackQualityChange',
                          'onPlayerPlaybackQualityChange');
  player.addEventListener('onStateChange','onPlayerStateChange');
  player.addEventListener('onError','onPlayerError');

Note: YT.PlayerState.BUFFERING(3)not  supported yet



Comparing the iframe API to the AS3 Player API
Explore API Using Chrome Dev Console

Example

http://jarek-io-iframe-api.appspot.com/player.html


Session Overview

What is the iframe player?
HTML5 playback in detail.
Details of writing and exposing a JavaScript API for 
controlling the player.
Comparing the iframe API to the AS3 player API.
iframe player API example application.



iframe Player API Example Application

Provides YouTube feed player functionality—think 
playlist player, but for any source of YouTube videos.
HTML5 + JavaScript + CSS.
Also powered by the YouTube Data API.
Hopefully useful in its own right, but written to illustrate 
iframe Player API usage.



iframe Player API Example Application
HTML5

<video> playback (for supported videos) via the iframe 
Player embed.

Using "chromeless" (controls=0) version of player.
<svg> for player's Pause and Play buttons.
<input type='range'> for Seek and Volume controls.
Google Chrome currently supports all features.

Some other browsers offer a subset, i.e. no support for 
<input type='range'>



iframe Player API Example Application
JavaScript

Lots of jQuery for plumbing!
Simplifies JSON-P access to the YouTube Data API.
Simplifies everything else as well.

iframe Player API interaction is all JavaScript.
Responding to events, controlling playback, etc.



iframe Player API Example Application
CSS

Basic CSS styling.
Webfonts via the Google Font API.
Bare bones design, but easy to change.



iframe Player API Example Application
Demo

http://gdata-samples.googlecode.com/
svn/trunk/ytplayer/iframe/index.html

(or http://goo.gl/ncqF7)

http://gdata-samples.googlecode.com/
http://gdata-samples.googlecode.com/svn/trunk/ytplayer/iframe/index.html
http://goo.gl/ncqF7


iframe Player API Example Application
Handling Player Events

A custom YouTube Player needs to understand 
various YouTube events and handle them appropriately.

onReady
onError
onStateChange

onReady is fired when the Player is loaded and API methods 
can be called.
onError is fired when a video can't be played.
onStateChange is for "everything else".

YT.PlayerState.ENDED
YT.PlayerState.PLAYING
YT.PlayerState.PAUSED
YT.PlayerState.BUFFERING
YT.PlayerState.CUED



iframe Player API Example Application
Handling State Changes

Recommended practice is to make no assumptions about 
global state or what triggered event.

You may think YT.PlayerState.PLAYING was triggered 
by your Play button, but it really was the Player itself.
Safer to explicitly set each UI element to the appropriate 
values (rather than toggling!) each time.



iframe Player API Example Application
Handling State Changes

function enable() {
  $.each(arguments, function(i, id) {
    $('#' + id).attr('disabled', false);
  });
}

function disable() {
  $.each(arguments, function(i, id) {
    $('#' + id).attr('disabled', true);
  });
}

function setSeekBarInterval() {
  seekBarInterval = setInterval(function() {
    var currentTime = Math.round(player.getCurrentTime());
    $('#currentTime').html(secondsToMmSs(currentTime));
    $('#seek').val(currentTime);
  }, 1000);
}



iframe Player API Example Application
Handling State Changes

case YT.PlayerState.CUED:
    enable('play');
    disable('pause', 'volume', 'seek');
break;

case YT.PlayerState.PAUSED:
    enable('play', 'volume', 'seek');
    disable('pause');
    if (seekBarInterval != null) {
        clearInterval(seekBarInterval);
        seekBarInterval = null;
    }
break;



iframe Player API Example Application
Handling State Changes

case YT.PlayerState.PLAYING:
    if (seekBarInterval != null) {
        clearInterval(seekBarInterval);
    }
    setSeekBarInterval();

    enable('pause', 'volume', 'seek');
    disable('play');

    $('#volume').val(player.getVolume());
    var duration = Math.round(player.getDuration());
    $('#duration').html(secondsToMmSs(duration));
    $('#seek').attr('max', duration);
break;



iframe Player API Example Application
Handling State Changes

case YT.PlayerState.ENDED:
    if (seekBarInterval != null) {
        clearInterval(seekBarInterval);
        seekBarInterval = null;
    }
      
    var duration = Math.round(player.getDuration());
    $('#currentTime').html(secondsToMmSs(duration));
    $('#seek').val(duration);

    enable('play');
    disable('pause', 'volume', 'seek');
      
    playNextVideo(player);
break;



Questions? Answers!

Hashtags:  #io2011 #YouTube
Feedback:  http://goo.gl/fdY2L


