
Get Your Content
Onto Google TV

Christian Kurzke
Developer Advocate

Andrew Jeon
Platform Manager

Mark Lindner
Tech Lead

1

LG

New Google TV Devices
- New Google TV devices with ARM processors
- Available in USA and Internationally

2
Sony Vizio

2

TV - A Social Device

3

3

4

Streaming
•High Quality
•SecurelyIntegrated

•One Interface

“Content” Is King

4

5

Streaming
•High Quality
•SecurelyIntegrated

•One Interface

“Content” Is King

5

HTTP “Streaming”

 MediaPlayer mPlayer = new MediaPlayer();
 mPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);

 mPlayer.setDataSource(“http://music.foo.com/ForElise.mp3”);

6

Android

Simultaneous download & playback == Progressive Download

“OK” for music. Today’s bandwidth is enough to download “perfect” audio quality.

6

http://music.foo.com
http://music.foo.com

Utilizing Network Bandwidth

7

Bit rate < Bandwidth

•Not achieving best quality possible

Bit rate > Bandwidth

•Re-buffering

7

Variable Bit Rate Encoding

VBR Benefits:

• Better perceived video quality than constant bit rate
• Best use of bandwidth

But:

• Variable bit rate is not adaptive to network capacity

Good choice for mobile, where primary goal is to minimize overall bandwidth.
Not ideal for TV where goal is to maximize quality.

8

8

Adaptive Bit Rate Streaming

9

Goal: Bit rate ~= Bandwidth

Typically consists of:
• A set of VBR video content files (synchronized to switch seamlessly)
• Descriptor file (XML) with meta information
• Metadata also typically has “seek” information (jump forward, backward in stream)

• The MediaPlayer URL points to the descriptor file

Various Standards: HLS, MPEG Dash, Smooth Streaming etc.

9

Android Adaptive Bitrate Streaming

Android (mobile) supports:

• HTTP Live Streaming (HLS) and RTSP
• Widevine

Google TV has all this -

And now also....

10

 MediaPlayer mPlayer = new MediaPlayer();

 mPlayer.setDataSource(“http://video.foo.com/MyStream.m3u8”);

Android

10

http://music.foo.com
http://music.foo.com

Announcing Support for Smooth Streaming Protocol

To make it easier for content owners to deliver streaming video content to Google TV:

• We have now added the capability to play back video using
the Microsoft Smooth Streaming protocol

- Developers can simply use URL points to *.ism URL with Android MediaPlayer API
on Google TV

• We are actively working on supporting MPEG-DASH streaming protocol in the future

11

 MediaPlayer mPlayer = new MediaPlayer();

 mPlayer.setDataSource(“http://video.foo.com/test_video.ism”);

11

http://music.foo.com
http://music.foo.com

But what if you have a “custom”
Streaming Server?

12

Supporting Custom Streaming Protocols

Streaming protocols are evolving, and many content owners are using proprietary protocols:
• Unique needs
• Legacy versions
• Future “Standard” Protocol versions

The problem:

Android MediaPlayer.setDataSource() only allows URI objects, Strings or FileDescriptors.
Does not allow generic InputStream object.

13

13

Introducing The Google TV Media Source API
We created a set of APIs which:

•Enable Android Developers to create own
• Streaming Protocol implementation
• Media Container parsers

•Decode and play back content using platform hardware accelerated codecs.

GtvMediaPlayer.setMediaSource(myMediaSource)

MyMediaSource can extend either PullMediaSource or PushMediaSource class

14

14

public abstract class MediaSource {

protected int getNumberOfTracks() {
// Returns the number of tracks in the variable, mMediaInfo.

}
protected abstract void onStart() {

 // Called when the NativePlayer is in the “preparing” state
}
protected abstract void onEnableTrack(int trackId, long startTimeUs) {

 // Called when a track is enabled
}
protected abstract void onDisableTrack(int trackId) {
 // Called when track is disabled. After this method is called
}
protected abstract void onHandleDiscontinuity (int trackId, int discontinuityType) {

// Called when a media track is skipping (e.g. format change, time jump)
}
protected abstract void onSeekTo(long timeUs) {

// Called when a media playback is seeked (ffwd, rwd).
}

}

Android

Implementing Your Custom Media Source

15

15

public class MyCustomPullMediaSource extends PullMediaSource {

... implement all the “Media Source” methods

/* Called by NativePlayer request next unit of media stream. */
 protected abstract AccessUnit onDequeueAccessUnit(int trackId) {

// in a “real world” implementation, re-use byte[] and MediaStreamChunk object!!

byte[] myData = ... // read, parse and extract from custom data stream

AccessUnit myAccessUnit =
 AccessUnit.createAccessUnit (myData, myDataLength, myMediaContext);

return (myAccessUnit);
}

Android

Implementing A Custom Pull Media Source

16

Implement all the methods in PullMediaSource and
•The following Methods

16

Gary Conners, Director, Advanced Product Technology, SiriusXM:
“With this capability, we have been able to quickly develop an app for Google TV that
plays our proprietary audio streaming format [...] without requiring OEM-specific code.”

17

Additional GtvMediaPlayer Features

We have added more AV features to improve media playback experience on Google TV

 Support multiple audio tracks
• Separate language tracks

 Closed Captions and Subtitle support
• Support for standard Timed Text Markup Language (TTML)
• Provide a widget which developers can freely modify and use in applications to easily

display Closed Captions and Subtitles based on TTML

18

18

19

20

Streaming
•High Quality
•SecurelyIntegrated

•One Interface

“Content” Is King

20

Ensuring high quality delivery

For best results, you want to continuously monitor:

• Network bandwidth
• Playback quality (Frames per second, FPS and dropped frames)

This allows you to:

• Ensure customer satisfaction
• Offer refunds or re-play

• Proactively detect (and mitigate) connectivity problems
• “Sorry, your Internet connection does not support 1080p playback!”

21

21

We Introduce Quality of Service (QoS) APIs

Now you can measure:

• Frames per Second (FPS)

• Network Bandwidth

• Buffer size, Buffer fill rate

• Buffered media playback duration

• Audio Info

• Detailed errors from underlying system, Unexpected End Of Stream (EOS)

Use “Analytics” frameworks to aggregate Playback Quality statistics

22

22

private class InfoListener implements MediaPlayer.OnInfoListener {

public boolean onInfo(MediaPlayer mediaPlayer, int what, int extra) {

switch (what) {
 case GtvMediaPlayer.MEDIA_INFO_NETWORK_BANDWIDTH:
 Log.d(TAG, "Current Bandwidth: " + extra + " kbps"); break;

 case GtvMediaPlayer.MEDIA_INFO_FPS: {
 Log.d(TAG, "Current FPS: " + extra);

 // In real world, check instanceof()
MediaPlayer gtvPlayer = (GtvMediaPlayer) mediaPlayer;

 // get current media playback info
 OnInfoMetaData mediaInfo= gtvPlayer.getOnInfoMetaData();
 int droppedFPS = mediaInfo.getInteger(OnInfoMetadata.MEDIA_INFO_META_DROPPED_FPS);

 Log.d(TAG, "Dropped FPS: " + droppedFPS);
}

}

Android

Example using QoS API

23

•Implement a MediaPlayer.OnInfoListener class
•Register with GtvVideoView.setOnInfoListener().

23

Developers first!

24

We will provide:
•An implementation of Smooth Streaming protocol with

• Media Source API

• PlayReady DRM handling in Java

• Multi-track audio handling

• TTML based closed caption handling

• Demonstration of QoS APIs to monitor streaming quality

We will release sample code how to use all those APIs as Open Source.

24

But Wait... There is More!

Google TV apps can now play back High Quality Content
directly from YouTube

If you want to utilize OUR existing encoding and streaming servers inside YOUR app:

Use the YouTube Android Player API for:
• Playing videos and playlists
• Registering to be notified of playback events
• YouTube UI widgets (e.g., YouTubePlayerView, VideoThumbnailView)

Session: YouTube Player API, Thursday at 1:30 PM

25

25

26

Streaming
•High Quality
•SecurelyIntegrated

•One Interface

“Content” Is King

26

DRM - In a Nutshell

Digital Rights Management:

•License Management
•Transport Encryption
•Secure Decoding (Trusted Video Path)

HTTPS is not a DRM

27

27

Typical DRM Use Case

28

Google TV Commerce
Site

License
Server

Content
Server

Discover (and purchase)
Content

Request Video Stream

Request LicenseNeeds License
for Playback

Stream + License ==
Playback

Check if Purchased

Grant License

Stream Content

28

DRM - In Android
DRM Framework introduced in Android 3.0 (HoneyComb)

•Extensible
•Android Application interact with a “Native Code” DRM Provider implementation

Android DRM Framework in package: android.drm

Android has built-in support for Widevine DRM.

But: Custom DRM Plugins
• Require Native Code
• Difficult to develop

29

29

http://developer.android.com/reference/android/drm/package-summary.html
http://developer.android.com/reference/android/drm/package-summary.html

Introducing PlayReady DRM for Google TV

30

ARM based Google TV devices will include support for Microsoft PlayReady DRM:

• Implemented as a plug-in to Android DRM Framework

• Accessed via standard Android DRM (Java) APIs

• Supports basic license acquisition and management

- Extensible to adapt to custom license servers and protocols.

• Playback using hardware “Trusted Video Path” (TVP)

• Integrated with Smooth Streaming protocol

30

Google TV - Keeping Your Content Safe

Google TV DRM Components:

•Android DRM Framework
- Managing playback rights of content
- Widevine and PlayReady support now built into the platform

• Trusted Video Path (TVP)
- Keeps decrypted video data securely in hardware secure “sandbox”
- Protects streamed media securely

• HDMI Content Protection
- Protecting Video Content all the way to the Television display

31

31

32

Streaming
•High Quality
•SecurelyIntegrated

•One Interface

“Content” Is King

32

The “User Interface” To Your Entertainment

33

Internet

33

How Viewers Discover Content

Users Search for content in System Search

Users Browse for content in the TV & Movies app

34

34

How Google TV Finds Content

35

Content available on Google TV is an aggregate of:

• Backend:
- Search engine indexed data: Video Site Map XML files

• Client side:
- Media Devices (physical)
- Media Devices (virtual)

35

Media Device Interactions

36

Channel Change

Channel List

DVR Recordings

36

37

38

39

Your “device”
HERE

40

One Way Pairing

41

Channel Change

A (legacy) device that is controlled via an Infra-Red (IR) Blaster.
• When tighter integration is not available

Device cannot send information to GoogleTV.

e.g: tune to:
"tv://channel/CNN")
or perform action

"Menu", "Channel Up"

41

Two Way Pairing

42

Notifications
DVR Recordings

When a published communication protocol exists for controlling the device.

• Bidirectional communication

• Device can send information and events to GoogleTV
• Channel change events

• Closed caption text

• Frequently uses TCP/IP
• Physical device: Locally connected

• Virtual device: Via the Internet (e.g. IP TV)

Channel Change

42

43

Streaming
•High Quality
•SecurelyIntegrated

•One Interface

“Content” Is King

43

Integrating New Media Devices

44

???

44

Building Your Own Media Device

A Media Device is:

• Similar to a “Device Driver”

• Packaged as an .apk

• Installed from the Google Play store

Media Devices consist of the following software components:

• Media Device Controller Service (Android Service)

• Setup Activity

• Settings Activity

45

45

Media Devices Framework Overview

46

TV Player App

Media Devices Service

Media Devices Session

Device Controller Service

Device Controller
GtvMediaPlayer instance

46

Device Controller Service

• Implemented as Android service (runs in the background)
• Interfaces to one or more media devices

• Notifies the system:
- When devices go online / offline
- Events like channel changes etc.

• Reports the devices information:
- Channel lineups
- Channel numbers / Call Signs
- Names, logo icons

47

Media Devices Service

Media Devices
Session

Device Controller Service

Device
Controller

TV Player App

47

Implementing a Device
Controller Service
(Step 1/2)

48

Media Devices Service

Media Devices
Session

Device Controller Service

Device
Controller

TV Player App

Subclass AbstractDeviceControllerService

•Register the device(s) and their channel lineup(s) with the system:

62

public final class MyDeviceService extends AbstractDeviceControllerService {
 public void onCreate() {
 super.onCreate();
 Device myDevice = buildDevice();
 setChannelUpdateInterval(myDevice.getId(), CHANNEL_UPDATE_INTERVAL_MS);
 addDevice(myDevice);
 }

 protected final AbstractDeviceController buildController(final Device device) {
 return new MyDeviceController(this, getSettings(), device.getId());
 }

Android

48

Implementing a Device
Controller Service
(Step 2/2)

49

Media Devices Service

Media Devices
Session

Device Controller Service

Device
Controller

TV Player App

Subclass AbstractDeviceControllerService

•Define and implement device features

62

 private Device buildDevice() {
 String deviceId = getSettings().generateUniqueDeviceId("mydevice");
 return new Device.Builder(getPackageName(), deviceId)
 .setLabel(getString(R.string.my_device_label))
 .setCapability(Capability.CAN_DISCONNECT, true)
 .setCapability(Capability.HAS_CHANNEL_LINEUP, true)
 .setCapability(Capability.LOCK_CHANNEL_LINEUP, true)
 .build();
 }
 protected void checkForChannelUpdates(final String deviceId) {
 ...
 }
}

Android

49

Device Controller

• Communicates to device using its protocol
• Handles user keypress events,

- Channel Up, Fast Forward, Guide

• Tunes device to requested URIs ("tv://...") which represent a channel, a VOD program or a
DVR recording, etc.

• Controls the Media Player in the associated Device Session including start, stop playback
and can change the players URI

- e.g., “hdmi://...” URIs for passthrough devices
- “http://...” URIs for "virtual" devices streaming video over the Internet

50

Media Devices Service

Media Devices
Session

TV Player App

Device Controller Service

Device
Controller

50

Implementing a Device
Controller

51

Media Devices Service

Media Devices
Session

Device Controller Service

Device
Controller

TV Player App

Subclass AbstractDeviceController

62

public final class MyDeviceController extends AbstractDeviceController {
...
 public void performAction(ActionEvent event) {
 switch (event.getAction()) {
 case CHANNEL_UP:
 myNextChannel(); break; // Implement necessary “channel up” change
 ...
 }
 }
 public void tuneToChannel(ChannelNumber channel) {
 Uri videoUri = ...; // Determine Video URI for the requested channel
 notifyLocationChanged(videoUri, EventSource.USER); // inform the Session Media Player
 }
}

Android

51

Setup Activity / Pairing

52

Confirmation Code:
90210

52

Settings Activity

53

53

54

Streaming
•High Quality
•SecurelyIntegrated

•One Interface

“Content” Is King

54

Bringing Content To Google TV:

•Supports many different Streaming Protocols
•HTTP Live Streaming
•Smooth Streaming
•Optionally - allows to implement your own

•Compatible with Industry Standard DRM Solutions
•Widevine
•Smooth Streaming and PlayReady
•Trusted Video Path

•Integrates with devices in your living room (and in the cloud)
•Media Devices API

55

55

http://developers.google.com/tv/

+Google TV Developers

56

Learn More About Google TV

56

http://developers.google.com/tv/
http://developers.google.com/tv/

<Thank You!>
+Google TV Developers

+Christian Kurzke
+ Andrew Jeon
+Mark Lindner

57

Developers

58

