(‘ Developers

O

Optimizing Your App Engine App

Marzia Niccolai Greg Darke Troy Trimble

Spender of GBucks Byte Herder Professional Expert Google -' @

Agenda

e Overview
e \Writing applications efficiently
Datastore Tips
Caching, Caching, Caching
Batch API requests
Asynchronous workflows
Offline workflows
Performance Settings
e Future Work
o App Engine Servers

O O O O O

O

Overview

Latency vs. Cost

Overview

Latency vs Cost is a central tradeoff

More efficient = lower costs

More resources = higher costs

Sometimes, you can reduce costs at the expense of speed

O

What is "Good Latency"”

Overview

O

Current Load @
Runtime Avg

URI Req/Sec Requests MCycles Latency

cument last 17 hrs last hr last hr
/api/int/gap2/artwork/ 1.0 86.72K 196 232 ms
/current_user/ 0.7 94.47K 612 420 ms
/pano/ 0.3 19.05K 249 172 ms
/api/int/gap2/canonical_artist/ 0.2 12.67K 35 75 ms
J 0.2 7.46K 13 46 ms
/api/int/gap2/asset/ 0.1 471K 407 270 ms

0.1 3.19K 144 942 ms

|l_apl/lnt/g§p2/user bookmarkgroup/

Caveat Emptor

Overview

e We're using Python here - but these strategies work well for Java too
o For things that only apply to one language, we'll let you know

O

Datastore Tips

Starting Out

datastore tips

e (General Strategies

®)
©)
®)

Minimizing calls per request
Favor optimizing frequently viewed pages
Migrate to HRD

e Specific Examples

O

O

O O O O O

Use key ids/names

Use run, not fetch (python)

Use projection queries (for few properties)

Use datastore cursors

Use "embedded entities" to store structured data
Set indexed=False

Datastore Anti-Design Pattern #1

datastore tips

Don't do fetch(1):

query for my data = MyModel.gql ('WHERE user = :1', 'current user')
my data = query for my data.fetch (1)

Use get (by id/key name):

my data = MyModel.get by key name ('current user')

O

Datastore Anti-Design Pattern #1

measurements

e Before
e 1 Datastore Fetch Op, 1 Datastore Query Op (2 Datastore Read Ops)
e 59 ms (as measured by AppStats)
o After
e 1 Datastore Fetch Op (1 Datastore Read Op)
e 4 ms (as measured by AppStats)
e Summary
e Costs 50% less and is 14x faster

O

Datastore Anti-Design Pattern #2

datastore tips

In fact, in Python, don't use "fetch" at all, really:

query for my data = MyModel.ggl ('WHERE user =
my data = query for my data.fetch(100)
for result in my data:

Use run:

query for my data = MyModel.ggl ('WHERE user =
my data = query for my data.run(limit=100)
for result in my data:

O

:1 LIMIT 100",

'current user')

:1', 'current user')

Datastore Anti-Design Pattern #3

datastore tips

When querying small entities, don't do this:
query for comments = Comments.ggl ('WHERE post = :1', 'post')
for comment in query for comments:

print comment.text

print comment.author

Use Projection Queries:

query for comments = db.ggl ('SELECT text, author FROM Comments WHERE post = :1', 'post')
for comment in query for comments:

print comment.text

print comment.author

O

Datastore Anti-Design Pattern #3

measurements

e Before

e 1 Datastore Read Op (.07/100K ops)

e Full entity fetch (more bandwidth, longer latency)
o After

e 1 Datastore Small Ops (.01/100K ops)

e Only necessary fields
e Summary

e Costs 85% less

O

Datastore Anti-Design Pattern #4

datastore tips

Don't use offsets:

query for comments = Comments.gql ('WHERE post = :1 LIMIT 10 OFFSET 10', 'post')
for comment in query for comments:

Use cursors:

cursor = self.request.get ('cursor')
comments, next cursor, more = Comments.query('post = ', 'post').fetch(1l0, start cursor = cursor)
for comment in comments:

O

Datastore Anti-Design Pattern #4

measurements

e Before
e 20 Datastore Fetch Ops, 1 Datastore Query Op (21 Datastore Read Ops)
e up to 177 ms (as measured by AppStats)

o After
e 10 Datastore Fetch Ops, 1 Datastore Query Op (11 Datastore Read Ops)
e 13 ms (as measured by AppStats)

e Summary
e Costs 47% less and is up to 13x faster

O

Datastore Design Pattern #1

datastore tips

e Embedded entities allow you to store structured data within a model
« Can be helpful for keep data denormalized for more efficient querying for a page

class Address (ndb.Model) :
type = ndb.StringProperty() # E.g., 'home', 'work'
street = ndb.StringProperty ()
city = ndb.StringProperty ()

class Contact (ndb.Model) :
name = ndb.StringProperty ()
display name = ndb.StringProperty ()
addresses = ndb.LocalStructuredProperty (Address, repeated=True)

new contact = Contact (name='Marzia Niccolai',
display name='Marce',
addresses=[Address (type='home',
city='London'),
Address (type='work',
street="'Spear St',
city='San Francisco')])

new contact.put ()

O

Datastore Design Pattern #2
datastore tips

o If a property of a model won't be used in a query, set that property to indexed=False
o When you write or update the entity you won't need to write any indexes for these properties

class Contact (ndb.Model) :
name = ndb.StringProperty ()
display name = ndb.StringProperty(indexed=False)
addresses = ndb.LocalStructuredProperty (Address, repeated=True)

new contact = Contact (name='Marzia Niccolai',
display name='Marce'
addresses=[Address (type="home',
city='London'),
Address (type='work',
street="'Spear St',
city='SF')])

new contact.put ()

O

Caching, Caching, Caching

Memcache

caching, caching, caching

Place frequently used and slow to compute data in memcache

greetings = memcache.get ('greetings')
if greetings is not None:
return greetings

else:
comments = render greetings()
memcache.add ('greetings', greetings)

return greetings

def render greetings():
greetings = db.GglQuery ('SELECT text, author FROM Greetings')

output = StringIO.StringIO()
for greeting in greetings:
output.write ('%s wrote:' % greeting.author)
output.write ('<blockquote>%$s</blockquote>' %
cgi.escape (result.content))
return output.getvalue ()

O

Instance Caching
caching, caching, caching

o Allows you to have your own eviction policy for data
e Can be faster (memcache usually has around 2-5ms latency)

GREETINGS = None

def get greetings (self):
global GREETINGS
if GREETINGS is None:
GREETINGS = memcache.get ("greetings")
if GREETINGS is None:
greetings = render greetings ()
memcache.add ("greetings", greetings)
GREETINGS = greetings
return GREETINGS

O

But, Really, Use NDB

caching, caching, caching

o Making your caching algorithm correct is hard:

PUT (K, V):

mc.put (K, LOCK(0), ttl=30) # Tombstone entity
db.put (K, V)

mc.delete (K) # Remove tombstone

GET (K) :
v = mc.get (K)
if v is null
r = uuid()
was added mc.add (K, LOCK(r), ttl=30) #add & was added is a minor optimization
cas value = was added ? mc.get (K) :0
v = db.get (K)
1f case value == LOCK(r):
mc.cas (cas value, v)
else if isinstance (v, LOCK)
return db.get (K)
else
return v

O

Datastore vs Memcache vs Instance Caching

caching, caching, caching

Datastore

Instance Caching

Latency

Total Storage

Per Entity Storage

Eviction Policy

50+ ms

Unlimited (paid)

1 MB

User Managed

2-5ms

Limited

1 MB

LRU evicted

<1 ms

Limited; Instance Size
Dependent

Instance Size Dependent

User Managed/Instance Lifetime

O

Edge Caching

caching, caching, caching

Charts 2

' Requests by Type/Second v| |6hrs|12nrs|24 hrs| 2 days | 4 days| 7 days | 14 days | 30 days |

B Static Requests [JJ Dynamic Requests [Cached Requests
20.00

16.00

12.00

8.00

4.00

1d 18hr 12hr 6hr now

class MyHandler (webapp.RequestHandler) :
def get (self):
self.response.headers.add header ('cache-control', 'public, max-age=7200') # 2hr cache
self.response.out.write ("<html><body><p>Hi there!</p></body></html>")

O

Batch APl Requests

What are batch api requests?

batch API requests

e Requests that operate on more than one piece of data
o Allows requests to 'fan out' to multiple servers
o Reduces overhead per piece of data

O

An example with Taskqueue

Anti-pattern

taskqueue.BulkAdd
taskqueue.BulkAdd
taskqueue.BulkAdd
taskqueue.BulkAdd
taskqueue.BulkAdd
taskqueue.BulkAdd
taskqueue.BulkAdd
taskqueue.BulkAdd
taskqueue.BulkAdd
taskqueue.BulkAdd
taskqueue.BulkAdd

taskqueue.BulkAdd

0 1200 1400

from google.appengine.api import taskqgqueue

for 1 in xrange (50):

taskqueue.add (name='offline-task-%d' % 1i,

O

url='/my offline process',
params={'value':
countdown=i,

queue name='default')

1},

1600

An example with Taskqueue

Using batch api

askqueue.BulkAdd
RPC Total
Grand Total

from google.appengine.api import taskqueue

queue = taskqueue.Queue ('default')

tasks = []

for 1 in xrange (50) :

tasks.append (taskqueue.Task (name='offline-task-%d' % 1i,

url='/my offline process',
params={'value': 1},
countdown=1))

queue.add (tasks)

O

APIs supporting batch api requests

batch API requests

e API that supports batch calls:

O

O

O
O
O

Memcache (get/set)
Datastore (put/get/query)
Taskqueue (add/lease_tasks)
Full Text Search (index.add)

Asynchronous Workflows

Introduction to Asynchronisity

Asynchronous workflows

« When to use:
- Perform 'slow' operations in parallel
- Perform cpu intensive operations while waiting for |O to complete

|0 1000 |2000 |3000 |4000
urlfetch.Fetch 147ms
urlfetch.Fetch e 2700ms
urlfetch.Fetch B 194ms
urlfetch.Fetch M 162ms
RPC Total T 3103ms
Grand Total TR 8107ms

O

Asynchronous URLFetch Example

Asynchronous workflows

from google.appengine.api import urlfetch
from google.appengine.api import apiproxy stub map

def event loop (rpcs):
while rpcs:
rpc = apiproxy stub map.UserRPC.wait any (rpcs)
rpcs.remove (rpc)

def do fetch(url) :

def done callback():

urlfetch response = rpc.get result()

print 'Fetched url', url

Do parsing/etc here...
rpc = urlfetch.make fetch call(

url=url, rpc=urlfetch.create rpc(callback= done callback))

return rpc

def main () :

urls = ('http://www.google.com', 'http://developers.google.com')
_rpcs = [do_fetch(url) for url in urls]
event loop(rpcs)

main ()

O

Asynchronous URLFetch Example (using ndb tasklets)

Asynchronous workflows

from google.appengine.api import urlfetch
from google.appengine.ext import ndb

@ndb.tasklet
def do fetch(url):
urlfetch result = yield urlfetch.make fetch call(
url=url, rpc=urlfetch.create rpc())
Do some processing with the urlfetch result
print 'Fetched url', url
raise ndb.Return (urlfetch result)

@ndb.toplevel

def main () :
urls = ('http://www.google.com', 'http://developers.google.com')
urlfetch results = yield [do fetch(url) for url in urls]
print [len(result.content) for result in urlfetch results]
main ()

O

Asynchronous URLFetch Example

Asynchronous workflows

O

Before

urlfetch.Fetch
urlfetch.Fetch
urlfetch.Fetch
urlfetch.Fetch
RPC Total
Grand Total

After

urlfetch.Fetch
urlfetch.Fetch
urlfetch.Fetch
urlfetch.Fetch
RPC Total
Grand Total

[0 1000 |2000 |3000 |4000
l47ms
R 2700ms

T 3103ms

12000 13000

APIs with Asynchronous Methods

Asynchronous workflows

The following APls have asynchronous methods available

e Blobstore (create upload url async, delete _async)
Memcache (set/get/delete-muilti, incr/decr, more!)

o
e URLFetch
e Datastore

O

Move Work Offline

Taskqueues

Move work offline

« If work can be deferred, then defer it
- Updating cached values
- \Waiting for external services
« Also useful for workflow systems
« Perform fan in (Brett Slatkin, Google 10 2010: http://goo.gl/CaGaA)

O

Taskqueues

Using taskqueue to a slow external resource

class UrlCache (ndb.Model) :
content = ndb.BlobProperty (compressed=True)
last updated = ndb.DateTimeProperty (indexed=False, auto now=True)

def truncate time(t, interval):
return (t / interval) * interval

def get url (url):
key name = 'x' + hashlib.shal (url) .hexdigest ()
entry = UrlCache.get by id(key name)
if not entry:
return update cache (url, key name) .content
if datetime.datetime.now() - entry.last updated > datetime.timedelta (seconds=FIVE MINUTES) :
try:
deferred.defer (update cache, url, key name,
_name='urlcache-%s-%d' % (key name, truncate time (time.time (), FIVE MINUTES)))
except (taskqueue.TaskAlreadyExistsError, taskqueue.TombstonedTaskError): pass
return entry.content

def update cache(url, key name):
entry = UrlCache (content=urlfetch.fetch(url) .content, id=key name)
entry.put ()
return entry

O

Performance Settings

Performance Settings

O

A A A A AR N A TIAYE)

Text Search

Datastore Admin

Memcache Viewer

Administration
lication Settings

Permissions

Blacklist

Admin Logs
Billing

Billing Settings

Billing History

Resources

Documentation

FAQ
Developer Forum

Downloads

Performance

Frontend Instance Class: ~F1 (600MHz, 128MB) ~|

Adjusting your Frontend Instance Class will affect all frontend versions of your application. Your frontends will have more memory and processing power, but
also consume frontend instance hours at an increased rate, which will lead to increased costs. For example an F2 consumes instance hours at twice the rate of
an F1. Learn more.

Idle Instances: (Automatic — Automatic)

The Idle Instances slider allows you to control the number of idle instances available to the default version of your application at any given time. Idle Instances
are pre-loaded with your application code, so when a new Instance is needed, it can serve traffic immediately. You will not be charged for idle instances over
the specified maximum. A smaller number of idle Instances means your application costs less to run, but may encounter more startup latency during load
spikes. Learn more.

Min O 2 Max
o
Automatic 50 100 500 Automatic

Pending Latency: (Automatic — Automatic)

The Pending Latency slider controls how long requests spend in the pending queue before being served by an Instance of the default version of your
application. If the minimum pending latency is high App Engine will allow requests to wait rather than start new Instances to process them. This can reduce the
number of instance hours your application uses, but can result in more user-visible latency. Learn more.

Min @ 5 Max
o)
Automatic 500ms 1s 7.5s Automatic
Save Settings \

Optimizing for Low Latency

Performance Settings

. min_idle_instances

- Helps handle bursty traffic

- Avoids the dreaded Loading Request
. max_pending_latency

- Keep client latencies low

O

Optimizing for Low Latency

Instances Console

Total number of instances
6 total (3 Resident)

Instances ()
QPS* Latency*
0.000 0.0ms
0.000 0.0ms
0.000 0.0ms
0.000 0.0ms
0.000 0.0ms
0.000 0.0ms

O

Requests
27

34
179

152

Average QPS*
0.000
Errors Age
0 14:19:46
0 14:18:39
0 14:24:29
0 3:33:57
0 14:14:00
0 14:04:00

Average Latency*

Unknown ms

Memory
106.2 MBytes

104.3 MBytes
102.5 MBytes
106.2 MBytes
106.0 MBytes

105.5 MBytes

Logs
View Logs

View Logs
View Logs
View Logs
View Logs

View Logs

Average Memory

105.1 MBytes
Availability Shutdown
© Resident Shutdown
© Resident Shutdown
© Resident Shutdown
(©) Dynamic Shutdown
() Dynamic Shutdown
() Dynamic Shutdown

Optimizing for Low Latency

Performance Settings

Idle Instances: (3 — Automatic)

The Idle Instances slider allows you to confrol the number of idle instances available to the default version of your application at any given time. Idle Instances
are pre-loaded with your application code, so when a new Instance is needed, it can serve traffic immediately. You will not be charged for idle instances over
the specified maximum. A smaller number of idle Instances means your application costs less to run, but may encounter more startup latency during load
spikes. Learn more.

! You currently do not have Warmup Requests enabled.

In order for your Min Idle Instances setting to immediately spin up instances you need to enable Warmup Requests for the default
version of your application. You can configure Warmup Requests in your app.yaml or appengine-web.xml| configuration files.

Min & > Max
(-
Automatic 50 100 500 Automatic

Pending Latency: (Automatic — 250ms)

The Pending Latency slider controls how long requests spend in the pending queue before being served by an Instance of the default version of your
application. If the minimum pending latency is high App Engine will allow requests to wait rather than start new Instances to process them. This can reduce the
number of instance hours your application uses, but can result in more user-visible latency. Learn more.

Min @ ~) Max
(-
Automatic 500ms 1s 7.5s Automatic

O

PageSpeed Service

Performance Settings

O

Pending Latency: (Automatic — Automatic)

The Pending Latency slider controls how long requests spend in the pending queue before being served by an Instance of the default version of your application.
If the minimum pending latency is high App Engine will allow requests to wait rather than start new Instances to process them. This can reduce the number of
instance hours your application uses, but can result in more user-visible latency. Learn more.

Min U > Max
o
Automatic 500ms 1s 7.5s Automatic

PageSpeed Service:
The PageSpeed Service automatically optimizes and caches your site for improved performance. To configure advanced settings, edit the pagespeed section in
your app.yaml file.

%Enable PageSpeed Service Flush Cache

Save Settings |

Optimizing for Low Cost

Performance Settings

e max_ Idle instances

o Keeps idle instances low to save money
o Affects 'Frontend Instance Hours' charge
e min_pending_ latency
o Allows requests to wait longer for busy instances

O

Optimizing for Low Cost

Performance Settings

Idle Instances: (Automatic — 3)
The |dle Instances slider allows you to control the number of idle instances available to the default version of your application at any given time. Idle Instances

are pre-loaded with your application code, so when a new Instance is needed, it can serve fraffic immediately. You will not be charged for idle instances over
the specified maximum. A smaller number of idle Instances means your application costs less to run, but may encounter more startup latency during load

spikes. Learn more.

Min Cfg , Max
Automatic 50 100 500 Automatic

Pending Latency: (750ms — Automatic)

The Pending Latency slider controls how long requests spend in the pending queue before being served by an Instance of the default version of your
application. If the minimum pending latency is high App Engine will allow requests to wait rather than start new Instances to process them. This can reduce the
number of instance hours your application uses, but can result in more user-visible latency. Learn more.

Min e . 2 Max

Automatic 500ms 1s 7.5s Automatic

O

Anti-Pattern

Performance Settings

O

Using Low Cost settings and Low Latency settings
Don’t do this!

Idle Instances: (15— 15)

The Idle Instances slider allows you to control the number of idle instances available to the default version of your application at any given time. Idle Instances
are pre-loaded with your application code, so when a new Instance is needed, it can serve traffic immediately. You will not be charged for idle instances over
the specified maximum. A smaller number of idle Instances means your application costs less to run, but may encounter more startup latency during load

spikes. Learn more.

9]

Min Z() » Max
Automatic 50 100 500 Automatic

Pending Latency: (750ms — 800ms)

The Pending Latency slider controls how long requests spend in the pending queue before being served by an Instance of the default version of your
application. If the minimum pending latency is high App Engine will allow requests to wait rather than start new Instances to process them. This can reduce the

number of instance hours your application uses, but can result in more user-visible latency. Learn more.

. D)
Min ¢ . = y Max
| @)
Automatic 500ms 1s 7.5s Automatic

App Engine Servers

The Future...

Today's App Engine hierarchy

Application

Version

Instance Instance

O

Backend

Instance

Instance

Tomorrow's App Engine hierarchy

Application

Version

Instance

App Engine Server Configuration

Mobile Frontend Server

O

application: myapp
server: mobile-fe
version: 1

runtime: python

server settings:

instance class: F2

min idle instances: 25
max_idle_ instances: automatic
min pending latency: automatic
max_pending latency: 250ms

handlers:

App Engine Server Configuration

Geo Backend Server

application: myapp
server: geo-be
version: 1

runtime: java

server settings:
instances: 10
instance class: B8

handlers:

O

Recap...

e Marzia covered Datastore modeling patterns and anti-

patterns
e Greg talked about batch apis, asynchronous apis and offline

requests
e Troy discussed optimization through Performance Settings
and the new world of Servers to come

O

Thank Youl!
Questions?

Troy Trimble Marzia Niccolal Greg Darke

