
Developers

1Saturday, June 30, 2012

Security and Privacy in Android
Apps

Jon Larimer - Security Engineer, Android Team
Kenny Root - Software Engineer, Android Team

2Saturday, June 30, 2012

Another privacy breach in the news...

3

At least it wasn’t your app this time!

3Saturday, June 30, 2012

Mobile devices are full of data...

4

Android protects access to sensitive data and device capabilities

4Saturday, June 30, 2012

Apps need to respect the data on Android devices

• People generally don't like giving out their personal details to strangers
• Unscrupulous marketers want to mine mobile devices for data

- User's phone number and email address could be harvested for SPAM
- Same with the people on their contact lists

• Criminals want to steal your money
- Sending premium-rate SMS messages from your phone
- Intercept two-factor authentication messages

5

$$$
5Saturday, June 30, 2012

Insecure apps can grant unwanted access to data!

• When a user allows your app to access some aspect of their phone, they're trusting
you with it

- Please don't let them down!
• If your app requests permissions, a security vulnerability in your app can grant other apps

access to the protected data or component without permission
- Storing personal data in a world-readable file
- Exporting an unprotected content provider
- Logging personal data in logcat logs

• It's not just other apps that you need to think about
- Insecure wireless networks
- Lost and stolen devices

6

Your
awesome app

Contacts

Messages
Malicious

app

Location

6Saturday, June 30, 2012

Upload a privacy policy for your app

7

Let users know what you’re going to do with their data

7Saturday, June 30, 2012

Developer account security

8

You don’t want other people to publish apps as you

8Saturday, June 30, 2012

App #2
(Release)

App #1
(Release)

Application signing key

9

Your signing key is part of the identity of your app

Debug Key Release Key

App #1
(Debug)

Same signing key means permissionLevel=”signature” works!

9Saturday, June 30, 2012

Signing key security

10

Don’t accidentally give out your key!

10Saturday, June 30, 2012

Signing key security

11

Don’t lose your key!

11Saturday, June 30, 2012

Security architecture of Android

12

Browser Process

Dalvik
VM

Native
Code

UID: app_0

CoolApp Process

Dalvik VM

UID: app_12

CoolAddon Process

Dalvik
VM

Native
Code

UID: app_19

system_server

PackageManager

UID: system

NetworkManager

ActivityManager

WifiManager

Linux kernel
Filesystem Wireless network driver

open()
permissions
checked by

kernel

WifiManager API
call permissions

checked by
system_server

Permission for Binder call to
another app checked

by system_server or app itself

12Saturday, June 30, 2012

Security for your app

The application is in its own process sandbox.
◦ Dalvik gives you the freedom to add your own crypto

implementations
◦ Reflection can be used to bypass scoping
■ private and protected may be ignored

◦ Native code can access and change data in the current
process's Dalvik VM - don't rely on the VM to provide security!

• For inter-process communication, there are protections:
◦ Intent filters
◦ Permissions
◦ Signatures

13

CoolAddon Process

Dalvik VM Native Code

UID: app_19

13Saturday, June 30, 2012

Typical application

14

Where’s the attack surface?

14Saturday, June 30, 2012

Typical application

15

Where’s the attack surface?

15Saturday, June 30, 2012

Protecting app components

• Accessible app components are declared in the AndroidManifest.xml file
- Activities – <activity>
- Services – <service>
- Broadcast receivers – <receiver>
- Content providers – <provider>

• Components specify what kind of Intent they accept with an <intent-filter> in the
manifest

- If a component has an <intent-filter> in the AndroidManifest.xml file, it's exported by
default

- Content providers are the exception: they export data by default
• Don't export app components unless you want other apps on the system to interact with

your app

16

App components and the AndroidManifest.xml file

16Saturday, June 30, 2012

Limit access to components by external apps

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.awesome">
 <application android:label="@string/app_name">
 …
 <service android:name=".ServiceExample"
 android:exported="false">
 <intent-filter>…</intent-filter>
 </service>
 …
 </application>
</manifest>

17

This service has an intent filter so it must be explicitly marked as not exported

AndroidManifest.xml

17Saturday, June 30, 2012

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Permissions for application components

• There are different permission protection levels available for apps:
- protectionLevel="normal" – A lower-risk permission that gives requesting applications

access to isolated application-level features, with minimal risk to other applications, the
system, or the user. This is the default protection level.

- protectionLevel="dangerous" – A higher-risk permission that would give a requesting
application access to private user data or control over the device that can negatively impact
the user.

- protectionLevel="signature" – Can be used to limit access to components to only apps
signed with the same certificate.

18

Using permissions on exported components

18Saturday, June 30, 2012

Limit access to an exported component by permission

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.awesome">
 <permission android:name="com.example.awesome.EXAMPLE_PERM"
 android:label="@string/example_perm_desc"
 android:protectionLevel="signature" />

 <application android:label="@string/app_name">
 <service android:name=".ServiceExample"
 android:permission="com.example.awesome.EXAMPLE_PERM">
 <intent-filter>…</intent-filter>
 …

19

In this example an application signed with the same key can access the service

AndroidManifest.xml

Define a permission

Require the permission to
access this service

19Saturday, June 30, 2012

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Checking permissions in code

• The AndroidManifest.xml should be used whenever possible to declare required
permission.

• However, if it's not possible, there are other ways:
- Context.registerReceiver(…) can be used to register a BroadcastReceiver dynamically

• There is a version of registerReceiver(…) which can be used to specify permission the broadcaster must
hold for your dynamically-registered receiver to be invoked.

- Context.checkCallingPermission(…) and Context.enforceCallingPermission(…) can be
used in your source code to make sure the calling app holds the appropriate permission.

• This can be used to implement fine-grained permissions if needed.

• Avoid the confused deputy problem:
- If your app is using its granted permissions to respond to another app, check that the calling

app has that permission as well.

20

Sometimes you want finer-grained control over how permissions are enforced

20Saturday, June 30, 2012

Access
Wifi

Access
Wifi

Avoid being the confused deputy

21

WifiControlApp

AttackerApp

WiFi Manager
(Strict Sheriff)

Requested
permission

during
install

No
permissions

during
install

21Saturday, June 30, 2012

Access
Wifi

Access
Wifi

Avoid being the confused deputy

22

WifiControlApp

AttackerAppWifiControlApp granted AttackerApp
permission without checking

WiFi Manager
(Strict Sheriff) Confused

Deputy

22Saturday, June 30, 2012

Protecting Android apps from users

• android:debuggable
- Disabled by default
- Never leave this enabled in release code!
- Allows a user to debug your app - even without source code
- Users with physical access can run code as your app and access your app's data

23

Don’t let users debug your apps

jlarimer-macbookair:~ jlarimer$ adb shell
shell@android:/ $ run-as com.example.awesomeness sh
shell@android:/data/data/com.example.awesomeness $ id
uid=10060(app_60) gid=10060(app_60)
shell@android:/data/data/com.example.awesomeness $ ls files/
secret_data.txt
shell@android:/data/data/com.example.awesomeness $ cat files/secret_data.txt
SECRETS!

23Saturday, June 30, 2012

Storing data

• Protect personal data and data that requires a permission to access
- Use MODE_PRIVATE for data files, shared preferences, and databases

• openFileOutput(), openSharedPreferences(), and openOrCreateDatabase() create files in your app's
private data directory

- External storage (sdcard) is shared storage
• Don't store personal or protected data on external storage without user consent

• You can't trust files that other apps can write to
- Don't store code libraries that are world writable or on external storage
- Don't store paths to code libraries in files that are world writable or on external storage
- Don't process data from writable files in native code - memory corruption vulnerabilities could

allow apps to run arbitrary code with your app's ID
24

Avoid exposing personal or protected data to other apps

24Saturday, June 30, 2012

Protecting data files

25

There are no good reasons to make your app’s private data files world readable

FileOutputStream fos = openFileOutput("private_data.txt", Context.MODE_PRIVATE);
SharedPreferences prefs = getSharedPreferences("data", Context.MODE_PRIVATE);

FileOutputStream fos = openFileOutput("private_data.txt", Context.MODE_WORLD_WRITEABLE);
SharedPreferences prefs = getSharedPreferences("data", Context.MODE_WORLD_READABLE);

Bad:

Good:

25Saturday, June 30, 2012

Data encryption doesn’t solve all problems

26

Encryption is not authentication!

EncryptedMessage = Encrypt(K, "Login-OK=0")

AlteredMessage = EncryptedMessage … XOR {…,0x31}

Plaintext = Decrypt(K, AlteredMessage) = "Login-OK=1"

Chosen Ciphertext Attack

26Saturday, June 30, 2012

Use a peer-reviewed library like

27

Encryption is not authentication!

java -jar KeyczarTool.jar create --location=/path/private.key \
 --purpose=crypt --name="My Server Key" --asymmetric=rsa
java -jar KeyczarTool.jar pubkey --location=/path/private.key \
 --destination=app/res/raw/server_pub.key

On the host

Crypter crypter = new Crypter(new AssetReader(R.raw.server_pub));
String ciphertext = crypter.encrypt("Secret message");

In your app

27Saturday, June 30, 2012

Leave inventing cryptography to the experts

28

Although, even experts make mistakes

Rivest, Shamir, and Adleman took 42
tries to discover the RSA algorithm.

28Saturday, June 30, 2012

Protect network traffic

• Assume that there's a bad guy reading all of your app's network traffic
- Public WiFi networks can't be trusted
- Rogue cellular base stations can intercept mobile network data traffic

• You can't trust data coming from a server
- Web servers can be compromised
- Network traffic can be vulnerable to man-in-the-middle (MitM) attacks that insert malicious

data into the network stream

29

Attackers can eavesdrop on your app’s communications

Mobile device

Your app The CloudBad guy

29Saturday, June 30, 2012

Protecting network traffic

30

A man-in-the-middle attack can change your network traffic...

30Saturday, June 30, 2012

Practice safe networking

• Best practice is to always encrypt network communications
- HTTPS and SSL can protect against MitM attacks and prevent casual snooping
- Server certificate validity is checked by default

31

Encrypt your network requests

URL url = new URL("https://www.google.com/");
HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();

• Be very careful running code retrieved over the network
- Use cryptographic signing for any DEX or native code libraries that you load dynamically
- Better yet, don't run code from the network

31Saturday, June 30, 2012

https://www.google.com
https://www.google.com

Built-in CA List

Certificate pinning

32

If you don’t completely trust the entire CA ecosystem...

CA #102

CA #73CA #54
CA #9 CA #85

TrustManager

SSLManager

HttpsURLConnection
My Certificate List

My CertCA #85 See the Android documentation on
HttpsURLConnection for example code

32Saturday, June 30, 2012

Using WebView

• Watch out for cross-site scripting (XSS) and cross-site request forgery (CSRF) vulnerabilities
if JavaScript is enabled on your WebView

- JavaScript is disabled by default
- If you run a web app in your Android app, you now have all of the security concerns of writing

an Android app plus all of the security concerns with running a website
• addJavascriptInterface() is dangerous

- Avoid exposing protected or personal data to a JavaScript interface
- Server or network could be compromised, you can't trust the code
- If you do use it, ensure that you're using HTTPS for the WebView

33

Don’t turn web problems into Android problems

33Saturday, June 30, 2012

Minimize requested permissions

34

Users don’t like when your app requests too many permissions...

34Saturday, June 30, 2012

Only request the permissions that your app requires

• Why minimize the amount of permissions your app requests?
- One group of researchers found that 1/3 of apps request more permissions than they need
- Security vulnerabilities can expose protected data
- Users like apps that request few permissions

• Permissions aren't required if you launch an activity that has the permission
- Getting a picture from the camera
- Sending an SMS through the SMS app

• Permissions can be temporarily granted to apps by content providers
- Letting the user pick a contact to share with your app

35

There are ways to access some Android capabilities without requesting permission

35Saturday, June 30, 2012

Get a camera pic without CAMERA permission

// create Intent to take a picture and return control to the calling application
Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

// create a file to save the image
fileUri = getOutputMediaFileUri(MEDIA_TYPE_IMAGE);
// set the image file name
intent.putExtra(MediaStore.EXTRA_OUTPUT, fileUri);

// start the image capture Intent
startActivityForResult(intent, MY_REQUEST_CODE);

36

This prompts the user to take the picture, so they're in control of what your app gets

36Saturday, June 30, 2012

Start the SMS app with a filled-in destination and message

Uri smsNumber = Uri.parse("sms:5551212");
Intent intent = new Intent(Intent.ACTION_VIEW);
intent.setData(smsNumber);
intent.putExtra(Intent.EXTRA_TEXT, "hey there!");
startActivity(intent);

37

Doesn’t require the SEND_SMS permission

37Saturday, June 30, 2012

Let the user choose a contact with ACTION_GET_CONTENT

Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
intent.setType(Phone.CONTENT_ITEM_TYPE);
startActivityForResult(intent, MY_REQUEST_CODE);

38

Retrieve the selected contact data without requesting READ_CONTACTS

void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (data != null) {
 Uri uri = data.getData();
 if (uri != null) {
 try {
 Cursor c = getContentResolver().query(uri, new String[] {
 Contacts.DISPLAY_NAME, Phone.NUMBER}, null, null, null);

38Saturday, June 30, 2012

More minimizing requested permissions

• Need a unique identifier?
- TelephonyManager.getDeviceId() requires READ_PHONE_STATE permission
- Hardware IDs are a poor choice for identity anyway - see http://android-

developers.blogspot.com/2011/03/identifying-app-installations.html
- Settings.Secure.ANDROID_ID doesn't require a permission, but still not perfect

• To identify an installation of your app
- Generate a UUID when your app starts and store it in shared preferences:
- String id = UUID.randomUUID().toString();

- Use Android Backup Service to save the shared preferences to the cloud
- See: https://developers.google.com/android/backup/

39

More ways to reduce requested permissions

39Saturday, June 30, 2012

http://android-developers.blogspot.com/2011/03/identifying-app-installations.html
http://android-developers.blogspot.com/2011/03/identifying-app-installations.html
http://android-developers.blogspot.com/2011/03/identifying-app-installations.html
http://android-developers.blogspot.com/2011/03/identifying-app-installations.html

Device Administration access

• Device Administation API provides a lot of power, can
be dangerous in the wrong hands

• Changing device security settings can have a serious
impact on overall security

• Spend extra time auditing if your app can act as
device administrator - you really don't want to leak
these permissions!

40

Designed for enterprise mobile device management (MDM) apps

40Saturday, June 30, 2012

Use Android Lint

41

Lint comes with the Android SDK and detects common programming errors

41Saturday, June 30, 2012

Developer documentation on security

• Android Security Overview: http://source.android.com/tech/security/index.html
- Describes how various security features are implemented in Android

• Designing for Security: http://developer.android.com/guide/practices/security.html
- Teaches you how to write apps with security in mind

• Security and Permissions: http://developer.android.com/guide/topics/security/
permissions.html

- SDK documentation on the Android permission system

• Application Security for the Android Platform: Processes, Permissions, and Other Safeguards,
Jeff Six, O'Reilly Media

42

See these sites for more information on what we talked about today

42Saturday, June 30, 2012

http://source.android.com/tech/security/index.html
http://source.android.com/tech/security/index.html
http://source.android.com/tech/security/index.html
http://source.android.com/tech/security/index.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html

<Thank You!>
Ask questions about writing secure apps: groups.google.com/group/android-security-discuss
Contact the Android security team: security@android.com

+Jon Larimer
jlarimer@google.com

+Kenny Root
kroot@google.com

43Saturday, June 30, 2012

mailto:security@android.com
mailto:security@android.com
mailto:jlarimer@gmail.com
mailto:jlarimer@gmail.com
mailto:kroot@google.com
mailto:kroot@google.com

Developers

44Saturday, June 30, 2012

