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Another privacy breach in the news...
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At least it wasn’t your app this time!
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Mobile devices are full of data...
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Android protects access to sensitive data and device capabilities
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Apps need to respect the data on Android devices

• People generally don't like giving out their personal details to strangers
• Unscrupulous marketers want to mine mobile devices for data

- User's phone number and email address could be harvested for SPAM
- Same with the people on their contact lists

• Criminals want to steal your money
- Sending premium-rate SMS messages from your phone
- Intercept two-factor authentication messages
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$$$
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Insecure apps can grant unwanted access to data!

• When a user allows your app to access some aspect of their phone, they're trusting 
you with it

- Please don't let them down!
• If your app requests permissions, a security vulnerability in your app can grant other apps 

access to the protected data or component without permission
- Storing personal data in a world-readable file
- Exporting an unprotected content provider
- Logging personal data in logcat logs

• It's not just other apps that you need to think about
- Insecure wireless networks
- Lost and stolen devices
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Your 
awesome app

Contacts

Messages
Malicious 

app

Location
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Upload a privacy policy for your app
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Let users know what you’re going to do with their data
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Developer account security
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You don’t want other people to publish apps as you
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App #2
(Release)

App #1
(Release)

Application signing key
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Your signing key is part of the identity of your app

Debug Key Release Key

App #1
(Debug)

Same signing key means permissionLevel=”signature” works!
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Signing key security

10

Don’t accidentally give out your key!

10Saturday, June 30, 2012



Signing key security
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Don’t lose your key!
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Security architecture of Android
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Security for your app

The application is in its own process sandbox.
◦ Dalvik gives you the freedom to add your own crypto 

implementations
◦ Reflection can be used to bypass scoping
■ private and protected may be ignored

◦ Native code can access and change data in the current 
process's Dalvik VM - don't rely on the VM to provide security!

• For inter-process communication, there are protections:
◦ Intent filters
◦ Permissions
◦ Signatures
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Typical application
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Where’s the attack surface?
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Typical application
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Where’s the attack surface?
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Protecting app components

• Accessible app components are declared in the AndroidManifest.xml file
- Activities – <activity>
- Services – <service>
- Broadcast receivers – <receiver>
- Content providers – <provider>

• Components specify what kind of Intent they accept with an <intent-filter> in the 
manifest

- If a component has an <intent-filter> in the AndroidManifest.xml file, it's exported by 
default

- Content providers are the exception: they export data by default
• Don't export app components unless you want other apps on the system to interact with 

your app
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App components and the AndroidManifest.xml file
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Limit access to components by external apps

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
          package="com.example.awesome">
    <application android:label="@string/app_name">
        …
        <service android:name=".ServiceExample"
                 android:exported="false">
            <intent-filter>…</intent-filter>
        </service>
        …
    </application>
</manifest>
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This service has an intent filter so it must be explicitly marked as not exported

AndroidManifest.xml

17Saturday, June 30, 2012

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android


Permissions for application components

• There are different permission protection levels available for apps:
- protectionLevel="normal"  – A lower-risk permission that gives requesting applications 

access to isolated application-level features, with minimal risk to other applications, the 
system, or the user. This is the default protection level.

- protectionLevel="dangerous"  – A higher-risk permission that would give a requesting 
application access to private user data or control over the device that can negatively impact 
the user.

- protectionLevel="signature"  – Can be used to limit access to components to only apps 
signed with the same certificate.
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Using permissions on exported components
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Limit access to an exported component by permission 

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
          package="com.example.awesome">
    <permission android:name="com.example.awesome.EXAMPLE_PERM"
                android:label="@string/example_perm_desc" 
                android:protectionLevel="signature" />

    <application android:label="@string/app_name">
        <service android:name=".ServiceExample"
                 android:permission="com.example.awesome.EXAMPLE_PERM">
            <intent-filter>…</intent-filter>
            …
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In this example an application signed with the same key can access the service

AndroidManifest.xml

Define a permission

Require the permission to 
access this service
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Checking permissions in code

• The AndroidManifest.xml should be used whenever possible to declare required 
permission.

• However, if it's not possible, there are other ways:
- Context.registerReceiver(…) can be used to register a BroadcastReceiver dynamically

• There is a version of registerReceiver(…) which can be used to specify permission the broadcaster must 
hold for your dynamically-registered receiver to be invoked. 

- Context.checkCallingPermission(…) and Context.enforceCallingPermission(…) can be 
used in your source code to make sure the calling app holds the appropriate permission.

• This can be used to implement fine-grained permissions if needed.

• Avoid the confused deputy problem:
- If your app is using its granted permissions to respond to another app, check that the calling 

app has that permission as well.
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Sometimes you want finer-grained control over how permissions are enforced
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Access
Wifi

Access
Wifi

Avoid being the confused deputy
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Access
Wifi

Access
Wifi

Avoid being the confused deputy
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WifiControlApp
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Protecting Android apps from users

• android:debuggable
- Disabled by default
- Never leave this enabled in release code!
- Allows a user to debug your app - even without source code
- Users with physical access can run code as your app and access your app's data
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Don’t let users debug your apps

jlarimer-macbookair:~ jlarimer$ adb shell
shell@android:/ $ run-as com.example.awesomeness sh
shell@android:/data/data/com.example.awesomeness $ id
uid=10060(app_60) gid=10060(app_60)
shell@android:/data/data/com.example.awesomeness $ ls files/
secret_data.txt
shell@android:/data/data/com.example.awesomeness $ cat files/secret_data.txt
SECRETS!
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Storing data

• Protect personal data and data that requires a permission to access
- Use MODE_PRIVATE for data files, shared preferences, and databases

• openFileOutput(),  openSharedPreferences(), and openOrCreateDatabase() create files in your app's 
private data directory

- External storage (sdcard) is shared storage
• Don't store personal or protected data on external storage without user consent

• You can't trust files that other apps can write to
- Don't store code libraries that are world writable or on external storage
- Don't store paths to code libraries in files that are world writable or on external storage
- Don't process data from writable files in native code - memory corruption vulnerabilities could 

allow apps to run arbitrary code with your app's ID
24

Avoid exposing personal or protected data to other apps
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Protecting data files
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There are no good reasons to make your app’s private data files world readable

FileOutputStream fos = openFileOutput("private_data.txt", Context.MODE_PRIVATE);
SharedPreferences prefs = getSharedPreferences("data", Context.MODE_PRIVATE);

FileOutputStream fos = openFileOutput("private_data.txt", Context.MODE_WORLD_WRITEABLE);
SharedPreferences prefs = getSharedPreferences("data", Context.MODE_WORLD_READABLE);

Bad:

Good:
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Data encryption doesn’t solve all problems
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Encryption is not authentication!

EncryptedMessage = Encrypt(K, "Login-OK=0")

AlteredMessage = EncryptedMessage … XOR {…,0x31}

Plaintext = Decrypt(K, AlteredMessage) = "Login-OK=1"

Chosen Ciphertext Attack
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Use a peer-reviewed library like
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Encryption is not authentication!

java -jar KeyczarTool.jar create --location=/path/private.key \
    --purpose=crypt --name="My Server Key" --asymmetric=rsa
java -jar KeyczarTool.jar pubkey --location=/path/private.key \
    --destination=app/res/raw/server_pub.key

On the host

Crypter crypter = new Crypter(new AssetReader(R.raw.server_pub));
String ciphertext = crypter.encrypt("Secret message");

In your app
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Leave inventing cryptography to the experts
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Although, even experts make mistakes

Rivest, Shamir, and Adleman took 42 
tries to discover the RSA algorithm.
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Protect network traffic

• Assume that there's a bad guy reading all of your app's network traffic
- Public WiFi networks can't be trusted
- Rogue cellular base stations can intercept mobile network data traffic

• You can't trust data coming from a server
- Web servers can be compromised
- Network traffic can be vulnerable to man-in-the-middle (MitM) attacks that insert malicious 

data into the network stream
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Attackers can eavesdrop on your app’s communications

Mobile device

Your app The CloudBad guy
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Protecting network traffic
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A man-in-the-middle attack can change your network traffic...
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Practice safe networking

• Best practice is to always encrypt network communications
- HTTPS and SSL can protect against MitM attacks and prevent casual snooping
- Server certificate validity is checked by default
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Encrypt your network requests

URL url = new URL("https://www.google.com/");
HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();

• Be very careful running code retrieved over the network
- Use cryptographic signing for any DEX or native code libraries that you load dynamically
- Better yet, don't run code from the network
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Built-in CA List

Certificate pinning
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If you don’t completely trust the entire CA ecosystem...

CA #102

CA #73CA #54
CA #9 CA #85

TrustManager

SSLManager

HttpsURLConnection
My Certificate List

My CertCA #85 See the Android documentation on
HttpsURLConnection for example code
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Using WebView

• Watch out for cross-site scripting (XSS) and cross-site request forgery (CSRF) vulnerabilities 
if JavaScript is enabled on your WebView

- JavaScript is disabled by default
- If you run a web app in your Android app, you now have all of the security concerns of writing 

an Android app plus all of the security concerns with running a website
• addJavascriptInterface() is dangerous

- Avoid exposing protected or personal data to a JavaScript interface
- Server or network could be compromised, you can't trust the code
- If you do use it, ensure that you're using HTTPS for the WebView
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Don’t turn web problems into Android problems
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Minimize requested permissions
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Users don’t like when your app requests too many permissions...
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Only request the permissions that your app requires

• Why minimize the amount of permissions your app requests?
- One group of researchers found that 1/3 of apps request more permissions than they need
- Security vulnerabilities can expose protected data
- Users like apps that request few permissions

• Permissions aren't required if you launch an activity that has the permission
- Getting a picture from the camera
- Sending an SMS through the SMS app

• Permissions can be temporarily granted to apps by content providers
- Letting the user pick a contact to share with your app

35

There are ways to access some Android capabilities without requesting permission
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Get a camera pic without CAMERA permission

// create Intent to take a picture and return control to the calling application
Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

// create a file to save the image
fileUri = getOutputMediaFileUri(MEDIA_TYPE_IMAGE); 
// set the image file name
intent.putExtra(MediaStore.EXTRA_OUTPUT, fileUri); 

// start the image capture Intent
startActivityForResult(intent, MY_REQUEST_CODE);
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This prompts the user to take the picture, so they're in control of what your app gets
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Start the SMS app with a filled-in destination and message

Uri smsNumber = Uri.parse("sms:5551212");
Intent intent = new Intent(Intent.ACTION_VIEW);
intent.setData(smsNumber); 
intent.putExtra(Intent.EXTRA_TEXT, "hey there!");
startActivity(intent);
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Doesn’t require the SEND_SMS permission
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Let the user choose a contact with ACTION_GET_CONTENT

Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
intent.setType(Phone.CONTENT_ITEM_TYPE);
startActivityForResult(intent, MY_REQUEST_CODE);
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Retrieve the selected contact data without requesting READ_CONTACTS

void onActivityResult(int requestCode, int resultCode, Intent data) {
    if (data != null) {
        Uri uri = data.getData();
        if (uri != null) {
            try {
                Cursor c = getContentResolver().query(uri, new String[] { 
                    Contacts.DISPLAY_NAME, Phone.NUMBER}, null, null, null);
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More minimizing requested permissions

• Need a unique identifier?
- TelephonyManager.getDeviceId() requires READ_PHONE_STATE permission
- Hardware IDs are a poor choice for identity anyway - see http://android-

developers.blogspot.com/2011/03/identifying-app-installations.html
- Settings.Secure.ANDROID_ID doesn't require a permission, but still not perfect

• To identify an installation of your app
- Generate a UUID when your app starts and store it in shared preferences:
- String id = UUID.randomUUID().toString();

- Use Android Backup Service to save the shared preferences to the cloud
- See: https://developers.google.com/android/backup/
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More ways to reduce requested permissions
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Device Administration access

• Device Administation API provides a lot of power, can 
be dangerous in the wrong hands

• Changing device security settings can have a serious 
impact on overall security

• Spend extra time auditing if your app can act as 
device administrator - you really don't want to leak 
these permissions!
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Designed for enterprise mobile device management (MDM) apps
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Use Android Lint
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Lint comes with the Android SDK and detects common programming errors
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Developer documentation on security

• Android Security Overview: http://source.android.com/tech/security/index.html
- Describes how various security features are implemented in Android

• Designing for Security: http://developer.android.com/guide/practices/security.html
- Teaches you how to write apps with security in mind

• Security and Permissions: http://developer.android.com/guide/topics/security/
permissions.html

- SDK documentation on the Android permission system

• Application Security for the Android Platform: Processes, Permissions, and Other Safeguards, 
Jeff Six, O'Reilly Media
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See these sites for more information on what we talked about today
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<Thank You!>
Ask questions about writing secure apps: groups.google.com/group/android-security-discuss
Contact the Android security team: security@android.com

+Jon Larimer
jlarimer@google.com

+Kenny Root
kroot@google.com
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