(‘ IG)OOe;/eIopers

O

SPDY
It's Here!

Overview

+ The Past

-+ What does the world look like today?
-+ What is SPDY?

-+ How to optimize for SPDY

+ The future of SPDY

- Stuff using or supporting SPDY

- An example: adding server push

#i012 3/64

y
4
4
F
F 4
4 4
F y
L 4

The Past

Near the beginning:

(Oops, lets try again)

#i012 5/64

io12

Near the beginning (of the web):
There was HTTP "0.9"

6/64

io12

And then (1996) there was:
HTTP/1.0

7/64

io12

Shortly thereafter (1997-1999) there was:
HTTP/1.1

8/64

What did a page look like in 1999? It was:

ource: www.pantos.org

#i012 9/64

Google in 1999:

Google!

Search the web using Google

[Google Search } [I'm feeling lucky

More Google!

Copyright ©1999 Google Inc.

#1012 10/64

y
4
4
4
4
4 4
F y
L 4

Today

Google in 2012:

+You Search Images Maps Play YouTube News Gmail Documents Calendar More ~ —
Signin
¢
Google Search I'm Feeling Lucky
iGoogle Advertising Programs Business Solutions Privacy & Terms +Google About Googly_
[4| 1 |—|>Jg

#i012 12/64

Today:

Pages
are

much
much

larger

#i012 13/64

Today:

- Pages are composed of more resources

+ They use a bunch of domains
+ They're far more dynamic
- Security is a bigger concern

#i012 14/64

Today:

#i012 15/64

And that really matters...

because speed-of-light bounds RTT!

Effective Bandwidth as RTT decreases

3,000

2,500

2,000

1,500

Effective Bandwidth (Mbps)

#i012

1,800
1,600
1,400
1,200
1,000

80

Download Kbps
o

600

Effective Bandwidth of HTTP

‘!@Q ‘!@Q ‘ﬁ,q bF!‘@QG-}ﬂQQ ﬁqﬂﬁq%ﬁqqﬁqgﬁq

Bandwidth

16/64

2010 vs 2012

Avg. Page Size Requests/Page Domains
Nov 15 2010 702k 74 10

May 152012 1059k 84 12

The trend seems to continue towards larger pages using more resources.

source: httparchive.org

#i012 17/64

But Now...

It's big money!

#i012 18/64

SPDY: It's here!

SPDY is a session-layer replacement for HTTP's
connection handling

#i012 20/64

io12

So.... Why?

21/64

The idea is that SPDY can help make sites:

- Faster
- More secure
- And, long-term, it can help to do it with less effort

+ (but no guarantees...)

#i012 22/64

How does it work?

#i012 23/64

SPDY:

- Is always over TLS

- Point-to-point privacy
by defauFt

- Transparent proxies get in the way
of anything else on port 80

- Firewalls aren't reliably open to
ports other than 80 and 443

- Allows for loading of resources
with an HTTP scheme over a
TLS connection

#i012 24/64

SPDY:

Is always over TLS

Does Headers Compression

Much of the headers
are repeated.

Much of the headers
are repeated.

User-Agent

Cookie

HTTP methods
HTTP version string
All of those "\r\n"s
etc.

Imagery supplied by PhotoObjects.net/Getty Images

#i012

25/64

SPDY:

Is always over TLS
Does Headers Compression

#i012

Reduces bandwidth required for headers

10-35% size reduction typical
for the first request

80-97% size reduction on
longer-lived connections

Especially useful in the client to server
direction since upload bandwidth is
often smaller

Think: mobile devices...

Frequency

018

016

014

012

01 ¢

008

006

004

002

0

" Compression% vs Frequency ——

0

10

20

30

40 50 60
Compression Percentage

70

80

90 100

26/64

SPDY:

- Is always over TLS
+ Does Headers Compression

s inay Framed 1111111771777
s error prone, 100000000000007
Easier to implement right! 1 00000000000007
1000000000000,

111111111177777

SPDY:

Is always over TLS

Does Headers Compression
Is Binary Framed

Is Multiplexed

Many (1,073,741,824) independent
streams per TCP connection

Either side can create a new
stream at any time

Imagery supplied by Stockbyte/Getty Images

#i012 28/64

SPDY:

Is always over TLS

Does Headers Compression
Is Binary Framed

Is Multiplexed

Has Full-Duplex Interleaved
and Prioritized Streams

- Prioritization allows the browser
to forget about request heuristics
and just send all the requests

- Interleaving allows "simultaneous"
delivery of data on multiple streams

- Interleaving also allows for high
riority data to temporarily 'interrupt’
ow-priority data

#1012 29/64

SPDY:

Is always over TLS

Does Headers Compression
Is Binary Framed

Is Multiplexed

Has Full-Duplex Interleaved
and Prioritized Streams

- Allows for Server Push

- Unlike data-URLs,
it allows resource caching

- Inlining is annoying

- Shaves off an RTT as compared to
just putting in a link and waiting

- Making its way into implementations now

Imagery supplied by Comstock/Getty Images

#i012 30/64

SPDY:

Is always over TLS

Does Headers Compression
Is Binary Framed

Is Multiplexed

Has Full-Duplex Interleaved
and Prioritized Streams

- Allows for Server Push

- Uses the same or less
bandwidth as inlining

- Streams can be aborted if
the browser realizes it already
has the resource

Imagery supplied by Comstock/Getty Images

#i012 31/64

SPDY:

Is always over TLS

Does Headers Compression
Is Binary Framed

Is Multiplexed

Has Full-Duplex Interleaved
and Prioritized Streams

- Allows for Server Push
Uses One TCP Connection
Reduces buffer bloat
Uses fewer server resources
Allows caching of the CWND on the client

Allows servers to better prioritize your
important traffic

Imagery supplied by Stockbyte/Getty Images

#i012 32/64

SPDY:

Is always over TLS

Does Headers Compression
Is Binary Framed

Is Multiplexed

Has Full-Duplex Interleaved
and Prioritized Streams

Allows for Server Push
Uses One TCP Connection
Uses Fewer Packets

- Thanks to compression
and using only one TCP connection

Imagery supplied by Stockbyte/Getty Images

#i012 33/64

SPDY:

Is always over TLS

Does Headers Compression
Is Binary Framed

Is Multiplexed

Has Full-Duplex Interleaved
and Prioritized Streams

- Allows for Server Push
Uses One TCP Connection
Uses Fewer Packets
Doesn't Require Rewriting Your Site
- Many parts of SPDY can help for most sites

- Some features, like 'server push' take
more effort

Imagery supplied by Stockbyte/Getty Images

#i012 34/64

SPDY Isn't Magic

Things that make SPDY less effective:

+ Lots of 3rd-party domains with resources you need to render your page

When you have lots of domains that don't match the original cert, SPDY can't
reuse the connection.

This matters most when comparing its speed to HTTP

- Very few resources without connection reuse
SPDY may not help you if you have very few resources (<6) and your users
navigate away after seeing the page instead of nagivating further in
Basically, the more "cold" page-loads, the less benefit SPDY gives

- High packet-loss links

SPDY does worse than HTTP (for today) on links with high RTT and high
packet loss.

#i012 35/64

SPDY vs HTTP?

As compared to SPDY, HTTP has some significant limitations.

- Not secure by default

+ No header compression

- No multiplexing

- Not full-duplex

- No prioritization; Browsers must employ "fun" heuristics instead.
+ No server push

- No interleaving

+ May require more DNS lookups

- Uses far more connections

- Helps cause buffer-bloat

#i012 36/64

But, Aren't Browsers Getting Smarter?

Yup. They are.
If your user has visited the site before, a smart browser like Chrome may help.

In particular, a browser could remember that visiting domain A means that it will
likely use:

6 connections to domain A, 6 connections to domain B, 3 connections to domain
C, etc.

For this to work, however, it requires the site to have changed little, for the user
to have already visited the site, for the browser to learn these things when the
user visited the site, and it still depends on the timely delivery of the DNS
resolutions for the other domains.

If the DNS data had a sufficiently high TTL, you don't have to redo the
resolutions... but there are good reasons to keep TTLs low such as fast reaction
outages or for load balancing.

#i012 37/64

You probably just saw "Wall 'O Text", right?

#i012 38/64

The one-sentence breakdown

Yes, they'e getting smarter, but it will likely still be worse that what you can do
with SPDY.

#i012 39/64

The Cost of HTTP Connections

Each connection:;

+ Requires a new DNS resolution (when going to a new domain)
- For many people this can be 100+ ms!
- Requires a new 3-way handshake
- +1 RTT
+ If using HTTPS
- generally +2 RTT, sometimes more
- Connections aren't free for servers
- they use CPU, memory, FDs, and ephemereal port space
- Takes up space in a table of your NAT box.
- when you run out of space here, weird things happen

#i012

40/64

What should you do?

Optimizing for SPDY as a System Administrator

+ Mind your cert chain
- Use smaller, but complete certificate chains
- Use wildcarts certs if they're available to you
- You'll want to ask your cert provider questions about this
- Unfortunately, this is a complicated issue

#i012 42/64

Optimizing for SPDY as a System Administrator

-+ TCP settings
- set your initcwnd to 10 packets worth
- ip route change default via <ip> initcwnd 10

- For more recent kernels, this is not necessary-- it is already the
default

- turn off tcp_slow_start_after_idle
- sysctl -w net.ipv4.tcp_slow_start_after_idle=0

#1012 43/64

For System Administrators

- DNS

- When possible, be sure that your resolvers return the same set of IPs for
any hostname that might match the same cert

- Try to be sure that the set of IPs provided with any resolution only
changes in ordering, not in content

If (new_domain_resolution.contains(IP of a pre-existing connection)
&& connection_SSL_cert.matches(new_domain))
- Connection reuse! Profit!

#1012 44/64

For Application Developers:

-+ Don't shard hostnames
- This might be required for HTTP, but not for SPDY

- You'll still need to do it for HTTP, but, think about how to avoid doing it
when the user is coming to you via SPDY

#i012 45/64

For Application Developers:

- Plan on using server-push instead of inlining in the future

- Server-pushed items are completely cacheable at the browser. This can
make subsequent page renderings much faster.

- Getting inlining right is non-trivial. What works great for this version of
your site may make things worse with your next change.

- Server-push with SPDY helps with this-- if you make a mistake, SPDY
can help mitigate the damage

#i012 46/64

For Application Developers:

- |f your site's cert is a wildcard cert, use domains that match that cert instead
of requiring others

- e.g. google has a wildcard cert: "*.google.com"

- If you use multiple domains, wildcard certs might end up being cheaper
anyway...

#i012 47/64

On Standards

- SPDY has been developed as an open, publicly documented protocol.
+ Source code for SPDY has been available as open-source since day 1.

-+ SPDY has been submitted to IETF as a proposal for HTTP/2.0

#i012 48/64

The Future of SPDY

We don't think we're done.

We'll be done only when we can serve a page in:

connection-setup + bytes/bandwidth time.

... We think we can get there! We'll need:

*+ name resolution push
+ cert data push
- explicit proxy support

#io12

49/64

Browsers supporting SPDY

Today, there are two browsers that support SPDY and have it on by default:

- Chrome
- Firefox (V13)

This ends up being a whole lot of users.

#i012 50/64

Using or Supporting SPDY

There are a bunch of companies, organizations, and projects which use or
support SPDY:

- Google's sites
https://www.google.com, https://gmail.google.com, https://plus.google.com

- App Engine sites
(if they use https)

- Twitter
https://twitter.com

- Akamai
(SPDY/2) technology preview late summer, part of the product line this Fall.

- Cotendo
(http://www.akamai.com/cotendo)

- Nginx
(http://mailman.nginx.org/pipermail/nginx-devel/2012-June/002343.html)

- (more coming on next slide)

#i012 51/64

Using or Supporting SPDY (cont'd)

There are a bunch of companies, organizations, and projects which use or
support SPDY:

- F5's SPDY Gateway
(http://www.f5.com/news-press-events/press/2012/20120508b.html)

- Strangeloop
(http://www.strangeloopnetworks.com/products/overview/features/)

- Jetty
(http://wiki.eclipse.org/Jetty/Feature/SPDY)

- mod_spdy
(http://code.google.com/p/mod-spdy/)

-+ node-spdy
(for node.js https://github.com/indutny/node-spdy)

- Momentum
(https://github.com/jonasschneider/momentum)

-+ (more coming on next slide)

#i012 52/64

Using or Supporting SPDY (cont'd)

There are a bunch of companies, organizations, and projects which use or
support SPDY:

- Amazon Silk
(http://aws.amazon.com/amazonsilk-jobs/)

- Netty
(http://netty.io/Blog/Netty+331+released+-+SPDY+Protocol+%21)

- SPDY-for-iPhone
(https://github.com/sorced-jim/SPDY-for-iPhone)

- spdylay
(https://github.com/tatsuhiro-t/spdylay)

- This is not a complete list!

#i012 53/64

A page to optimize

SPDY

=

"
%

#i012 54/64

The CSS

img { CSS
float:left; margin:0px; padding:0px; height:20px; width:20px;
opacity:0.8; filter:alpha (opacity=80) ;

}

img:hover {

float:left; margin:0; padding:0;

opacity:1.0; filter:alpha (opacity=100) ;

}

#i012 55/64

The Javascript

function main () { JAVASCRIPT

var up_thru host = window.location.protocol + "//" + window.location.host;

var pathname window.location.pathname;

var filebase pathname.substr (0, pathname.lastIndexOf('/"));
var tile size x = 20, tile size y = 20;

var image size X = 640, image size y = 400;

var rows = Math.ceil (image size y / tile size y);

var columns = Math.ceil (image size x / tile size x);

var text = [];

for (x = 0; x < rows * columns; ++x) {

if (x % columns == 0) text.push("<div style=\"clear:both;\"></div>");
text.push ("<img src='" + up thru host);
if (window.location.protocol == "http:") text.push(((x%8) + 1));

text.push(filebase + "/s/" + x + ".png'/>");
}
document.getElementById("tiles go here").innerHTML = text.join('');

#i012 56/64

The HTML

<html> HTML

<head>
<title>SPDY SAMPLE</title>
<style type="text/css">
<-- CSS GOES HERE. -—>
</style>
<script language=javascript>
<-- JAVASCRIPT GOES HERE. —-->
</script>
</head>
<body>
<div id="tiles go here"></div>
<script language=javascript>
main () ;
</script>
</body> </html>

#i012 57/64

The PHP - main()

function main () { PHP
$script name = $ SERVER["SCRIPT NAME"];
S$uri=substr ($script name, strrpos($script name, '/') + 1);
$server name = $ SERVER["SERVER NAME"];
if ($fd = fopen (Suri, "rb")) {

$fn = Suri . ".push";
$XAssociatedContent = makeXAssociatedContent ($fn, "https://", $server name);
foreach ($XAssociatedContent as $line) header ('x-associated-content: ' . $line, false);
printFile ($£fd) ;
} else {
if (Suri == "index.html") {

doPrintDirListing() ;
} else {
doFileNotFound() ;

#i012 58/64

The PHP - makeXAssociatedContent()

PHP

function makeXAssociatedContent ($filename, S$scheme, S$hostname) {
Sfp = fopen ($filename, "r");
Sretarray = array();
Sretval = "";
$Xacilen = strlen('x-associated-content');

$line len = 0;

if (Sfp) A
while ($1line = fgets($fp)) {

if (!$line) continue;

if (($line_len += strlen($line)) >= 512 - $xac_len) {
Sretarray[] = S$Sretval;
Sretval = ""; S$line len = 0;

}

Sescaped line = addslashes(str replace("\n", '', $line));

if (Sretval) S$retval = Sretval . ',';

$url = S$scheme . Shostname . Sescaped line;

Sretval = Sretval . '™' . Surl . '"';

}

if (Sretval != "")
Sretarray[] = S$retval;

return Sretarray;

#i012 59/64

The PHP - the rest

function printFile ($fd) { PHP
while (!feof ($£fd)) {
$read buf = fread($fd, 4096);
print Sread buf;

function doFileNotFound () {
header ("status: 404");
header ("HTTP/1.0 404 Not Found");
print "<html><head></head><body>\n";
print "Sorry, file:" . Suri . "wasn't found.\n";
print "</body></html>";

function doPrintDirListing() {
print "<html><head></head><body>";

Sfiles = scandir(".");
foreach ($files as S$file) {
print '' . S$file . "
\n";

}
print "</body></html>";

#i012 60/64

Bits O Apache Config

/etc/apache2/sites-available/default-ssl

<Directory /var/www/>
Options Indexes FollowSymLinks MultiViews
AllowOverride All
Order allow,deny
allow from all
</Directory>
AliasMatch "~/.*(.html)$" /var/www/push mapper.php

/etc/apache2/mods-available/spdy.conf

<IfModule spdy module>
SpdyEnabled on
SpdyMaxThreadsPerProcess 100
SpdyMaxStreamsPerConnection 1000
</IfModule>

#i012

61/64

The .push file

spdy push middle sample.html.push

/s/228

/s/230
/s/231
/s/232
/s/234
/s/235

/s/237
/s/238
/s/239
/s/240
/s/241
/s/242
/s/243
/s/244
/s/245

/s/247
/s/248

/s/250

-bng
/s/229.

png

-png
-png
-png
-pbng
-bng
/s/236.

png

-bng
-png
-png
-bng
-bng
-png
-png
-png
-png
/s/246.

png

-bng
-bng
/s/249.

png

-bng

#i012

62/64

<Thank You!>

fenix@google.com

O

O

