

No-SQL vs. SQL
Battle of the Backends

Alfred Fuller
Ken Ashcraft

Data in the Cloud

Why Cloud?

•  Fault Tolerance
–  We man the pagers for you
–  Automated failure recovery

•  Low maintenance
–  We manage updates on every level for you (bare metal -> software patches)
–  Focus on what you do best

•  Durability
–  Built-in replication
–  Distributed geographically

•  Accessibility
–  Always on, always available (as long as you have an internet connection)
–  Local development environments

MOAR
Cloud!!!

Google App Engine (GAE)

• Build apps on Google’s infrastructure

• Platform as a Service (PaaS)
– Easy to build
– Easy to scale
– Easy to maintain

• Focus on what makes your app great!

App Engine + Storage

App
Engine

Cloud
SQL

Cloud
Storage Datastore

• Google storage infrastructure
• Same technology we use for our own applications
• Distilled into well documented APIs
• Built for scale (size and traffic)

– 2 Trillion operations per month
• Fully managed ‘NoSQL’ solution

Cloud SQL

• Fully managed
• Pure MySQL

No-SQL vs. SQL
Battle of the Backends

Alfred Fuller
Ken Ashcraft

Queries

•  We support an ever growing subset of SQL
– Filters

•  SELECT * FROM Table WHERE A=1 AND (B=2 OR C=3)
– Sorting

•  SELECT * FROM Table ORDER BY A, B DESC
– Projections / Index-Only Queries

•  SELECT A, B FROM Table
•  Beyond SQL

– Repeated properties
•  Contains all(==) / any(IN)

•  Scales in the size of the result set!

No-SQL?

Aggregation

“Compute the average age of people in each city.”

SQL

Aggregations

16

“Compute the average age of people in each city.”

SELECT people.city_id, AVG(people.age)

 FROM people

 GROUP BY people.city_id;

MapReduce

city=3, age=5

city=3, age=7

city=4, age=9

city=4, age=9

city=1, age=3

city=1, age=2

city=2, age=3

city=4, age=8

5 / 2 = 2.5

3 / 1 = 3

12 / 2 = 6

26 / 3 = 8.66

5 3

3 2

8 4

3 1

9 4

9 4

7 3

2 1

2 3

1 2

3 5

4 9

3

7

9 8

“Compute the average age of people in each city.”
Person

Materialized View
Track Changes

city=3, age=5

city=3, age=7

city=4, age=9

city=4, age=9

city=1, age=3

city=1, age=2

city=2, age=3

city=4, age=8

city=4, age=3

city=4, age=2

Fan-in and Apply

2 -3,-1

1 -2,-1

3 -7,-1

4 +2,+1

+7,+1

-5,-1

+3,+1 +5,+1

city=1, age=7

city=4, age=5

5 / 2 = 2.5

3 / 1 = 3

12 / 2 = 6

26 / 3 = 8.66

10 / 2 = 5

36 / 6 = 6

“Compute the average age of people in each city.”

2

1

3

4

SQL

19

Joins

SELECT AVG(people.age), cities.name, cities.latitude, cities.longitude

 FROM people, cities

 WHERE people.city_id = cities.city_id

 GROUP BY people.city_id;

“Compute the average age of people in each city and look up the location for that city.”

Scoreboard

Datastore Cloud SQL

Queries ✔ ✔✚

Transactions

•  Grouping of entities under a single transaction log
•  Many entity groups = scalable ACID semantics

Entity Groups

• Id
• Health
• Gold Player

• Health Potion
• Power
• Durability Sword

EG

Entity

Entity

Multi-row transactions

•  Id
• Health
• Gold

Player

• Health Potion

Python
@db.transactional

def use_potion():

 player1 = get_player(1)

 potion = player1.get_item(“potion”)

 player1.health += potion.health

 db.delete(potion)

 db.put(player1)

Python
db.transactional(xg=true)

def sell_potion(id1, id2):

 buyer = get_player(id1)

 seller = get_player(id2)

 potion = seller.get_item(“potion”)

 seller.gold += 25

 buyer.gold -= 25

 buyer.store_item(potion)

 db.delete(potion)

 db.put(buyer, seller)

XG transactions

•  Id
• Health
• Gold

Player

• Health Potion

Transactions in SQL

25

SQL
START TRANSACTION;

SELECT gold FROM players WHERE id IN (1, 2);

SELECT COUNT(*) FROM inventory WHERE player_id = 1 AND type = ‘potion’;

UPDATE players SET gold = gold + 25 WHERE id = 1;

UPDATE players SET gold = gold – 25 WHERE id = 2;
UPDATE inventory SET player_id = 2 WHERE player_id = 1 AND type = ‘potion’ LIMIT 1;

COMMIT;

•  “Sell a potion to another player”

Transactions in SQL

26

SQL
START TRANSACTION;

SELECT gold FROM players WHERE id = 1;

SELECT COUNT(*) FROM friends WHERE player_id = 1;

UPDATE players SET gold = <amount to give away> WHERE id = 1;

UPDATE players, friends SET players.gold = players.gold + 25

 WHERE friends.player_id = 1 AND players.id = friends.friend_id;

COMMIT;

•  “Give gold to all of your friends”

Scoreboard

Datastore Cloud SQL

Queries ✔ ✔✚

Transactions ✔ ✔✚

Consistency

•  Megastore Replication!
•  Entity groups

– Parallel transaction logs
– Parallel replication

•  No Master
•  Strong within an entity group

– Get
– Ancestor Query

•  Eventual across entity groups
– Global Queries

Consistency

EG

Entity

Entity

EG

Entity

Entity

EG

Entity

Entity

Master + Synchronous Replication

Datacenter A

Datacenter B

Datacenter C

Client MySQL

Scoreboard

Datastore Cloud SQL

Queries ✔ ✔✚

Transactions ✔ ✔✚

Consistency ✔ ✔✚

Scalability

Google Time Keeper

•  Used by Google AdWord’s sales and support team
•  Tracks time spent on

–  Chat support
–  Email support
–  Campaign optimization

Google Org Chart

• Tracks 30k+ employees
• 10-100 QPS

• Thousands of QPS
• Millions of users
• Billions of ruffled feathers

Disgruntled Pigeons

• All the best features of each layer

Datastore on Megastore on Bigtable on …

GFS v2
Bigtable
Megastore
Datastore

• Huge Capacity
• Durable

GFS v2

Data

•  Automatically splits and balances data based on load
•  Scales linearly with available resources

BigTable Load Balancing

•  Works at scale
–  See 2011 talk “More 9s Please: Under The Covers of the High Replication Datastore”
–  9’s are important at scale

•  Not reliant on a single datacenter
•  Handles local issues
•  Handles catastrophic failures

Megastore

EG

Entity

Entity

EG

Entity

Entity

EG

Entity

Entity

EG

Entity

Entity

EG

Entity

Entity

BigTable A BigTable B

EG

Entity

Entity

Scoreboard

Datastore Cloud SQL

Queries ✔ ✔✚

Transactions ✔ ✔✚

Consistency ✔ ✔✚

Scalability ✔ ✔✚

Management

•  No configuration needed
•  Just start writing data
•  Entity ‘Kinds’ for table
•  Namespaces for multi-tenancy/isolation

Using Datastore

Scoreboard

Datastore Cloud SQL

Queries ✔ ✔✚

Transactions ✔ ✔✚

Consistency ✔ ✔✚

Scalability ✔✚ ✔

Management ✔ ✔✚

Schema

SQL Schema Change

•  Strictly enforced
•  Set at table create

Schema Change

SQL
CREATE TABLE Player (name VARCHAR(256), health int);
…

ALTER TABLE Player ADD COLUMN mana int;

SQL Schema Change

•  ALTER TABLE
– Locks the table
– Copies entire table

•  Online Schema Change
– Write to new and old table
– Bulk copy
– Rename new table

– Look at Percona’s pt-online-schema-change for an example

•  Update code
•  Optionally write MapReduce to backfill

Datastore Schema Change

Python
class Player(db.Model)

 name = db.StringProperty()

 health = db.IntegerProperty()

mana = db.IntegerProperty(default=0)

Scoreboard

Datastore Cloud SQL

Queries ✔ ✔✚

Transactions ✔ ✔✚

Consistency ✔ ✔✚

Scalability ✔✚ ✔

Management ✔✚ ✔

Schema ✔ ✔✚

Friends?

DropRectangle.net SQL

Users

• user_id
• name

Files

• file_id
• owner_id
• name

ACL

• file_id
• user_id
• permission

DropRectangle.net NoSQL

User1
File1

ACL1

ACL2

File2 ACL3

Full support of off-the-shelf

• Frameworks
– Hibernate
– JDO/JPA
– Spring
– Django

• WordPress
• Standards Based Existing Applications

Greg’s List

Cloud SQL

(active listings)

(memory)

Datastore

(archived listings)

(disk)

Scoreboard

Datastore Cloud SQL

Queries ✔ ✔✚

Transactions ✔ ✔✚

Consistency ✔ ✔✚

Scalability ✔✚ ✔

Management ✔✚ ✔

Schema ✔✚ ✔

<Thank You!>
Questions?

https://developers.google.com/appengine/docs/python/datastore/
https://developers.google.com/cloud-sql/

