(‘ Google
Developers

(@

No-SQL vs. SQL

Battle of the Backends

Alfred Fuller
Ken Ashcraft GOOS[Q “ @

Data in the Cloud

Why Cloud? \ MOAR -

Fault Tolerance
— We man the pagers for you
— Automated failure recovery
* Low maintenance
— We manage updates on every level for you (bare metal -> software patches)
— Focus on what you do best
Durability

— Built-in replication
— Distributed geographically
Accessibility

— Always on, always available (as long as you have an internet connection)
— Local development environments

O

Google App Engine (GAE)

 Build apps on Google’s infrastructure

e Platform as a Service (PaaS)
—Easy to build e

—Easy to scale
—Easy to maintain

« Focus on what makes your app great!

O

App Engine + Storage

— —

N

//// a
y
/
y A\
\

il D D
Engine
/// \\ / \ / \

O

App “ENGINE

DATASTORE

« Google storage infrastructure
« Same technology we use for our own applications
* Distilled into well documented APIs
 Built for scale (size and traffic)
—2 Trillion operations per month
* Fully managed ‘NoSQL' solution

O

Cloud SQL

e Fully managed
* Pure MySQL

O

(@

No-SQL vs. SQL

Battle of the Backends

Alfred Fuller
Ken Ashcraft GOOS[Q “ @

Queries

*PATASTORE
No-SQL?

« We support an ever growing subset of SQL
— Filters
« SELECT * FROM Table WHERE A=1 AND (B=2 OR C=3)
—Sorting
« SELECT * FROM Table ORDER BY A, B DESC
— Projections / Index-Only Queries
« SELECT A, B FROM Table
« Beyond SQL
— Repeated properties
« Contains all(==) / any(IN)
 Scales in the size of the result set!

O

Glovd SO
Aggregation

“Compute the average age of people in each city.”

O

Glovd SO
Aggregations

“Compute the average age of people in each city.”

SELECT people.city_id, AVG(people.age)
FROM people
GROUP BY people.city_id;

O

“DATASTORE

MapReduce

“Map “SHUFFLE “REDUCE
city=3, age=5 B s
city=1, age=2 z 2
city=3, age=7 3 7 z 2 3 5/2=25
city=4, age=9 z 9 W2 3 3/1=3
City=4, age=9 4] o E 5 7 12/2=6
city=1, age=3 z 3 ‘2]l 9 9 3 26 /3 =8.66
city=4, age=8 4 8 o
city=2, age=3 z 3

(\ “Compute the average age of people in each city.”

*DATASTORE
Materialized View

Track Changes Fan-in and Apply
city=4, age=5
City=4, age=2
city=1, age=7 Z -2,-1 +7,+1 Z 10/2=5
city=4, age=9 7 -3,-1 i 2 y 3/1=3
city=4, age=9 z -7,-1 -5,-1 T 12/2=6
city=1, age=3 4| 4241 4341 4541 4| 36/6=6
City=4, age=8
city=4, age=3

(\ “Compute the average age of people in each city.”

Joins

“Compute the average age of people in each city and look up the location for that city.”

SELECT AVG(people.age), cities.name, cities.latitude, cities.longitude
FROM people, cities
WHERE people.city_id = cities.city_id
GROUP BY people.city_id;

O

Scoreboard

Queries v v+

O

Transactions

Entity Groups EEntity
E

ntity

« Grouping of entities under a single transaction log
* Many entity groups = scalable ACID semantics

Player g
Potion g&

Sword s

O

*DATASTORE

*PDATASTORE

Multi-row transactions
I
@db. transactional FEE== =FACE TO DEIRE FOTIORM

def use_potion():
player1l = get_player(1)
potion = playerl.get_item(“potion”)
playerl.health += potion.health

db.delete(potion)
db.put(player1)

*Id
Player Ris
Potion EEE

*PDATASTORE
XG transactions
I [

2. EramseeoneL b i) FREZZ SFACE TO SELL FOTIOHN
def sell_potion(idl, id2):

buyer = get_player(id1)

seller = get_player(id2)

potion = seller.get_item(“potion”)
seller.gold += 25

buyer.gold -= 25
buyer.store_item(potion)
db.delete(potion)
db.put(buyer, seller)

*Id
Player R&&
Potion EEE
O

Glovd SO
Transactions in SQL

» “Sell a potion to another player”

START TRANSACTION;

SELECT gold FROM players WHERE id IN (1, 2);

SELECT COUNT(*) FROM inventory WHERE player_id = 1 AND type = ‘potion’;

UPDATE players SET gold = gold + 25 WHERE id = 1;

UPDATE players SET gold = gold — 25 WHERE id = 2;

UPDATE inventory SET player_id = 2 WHERE player_id = 1 AND type = ‘potion’ LIMIT 1;
COMMIT;

O

Glovd SO
Transactions in SQL

» “Give gold to all of your friends”

START TRANSACTION;

SELECT gold FROM players WHERE id = 1;

SELECT COUNT(*) FROM friends WHERE player_id = 1;

UPDATE players SET gold = <amount to give away> WHERE id = 1;

UPDATE players, friends SET players.gold = players.gold + 25
WHERE friends.player_id = 1 AND players.id = friends.friend_id;

COMMIT;

Scoreboard

Queries v v+
Transactions v vE

O

Consistency

*DATASTORE
Consistency

» Megastore Replication!
Entity groups
— Parallel transaction logs
— Parallel replication
No Master Entity
Strong within an entity group Entity
— Get
— Ancestor Query
Eventual across entity groups
— Global Queries

4B [

[I

O

Glovd SO
Master + Synchronous Replication

Datacenter B

Datacenter A

Datacenter C

O

Scoreboard

Queries v v+
Transactions v v+
Consistency % v+

O

Scalability

Glovd SO
Google Time Keeper

» Used by Google AdWord's sales and support team
» Tracks time spent on

— Chat support

— Email support

— Campaign optimization

O

Glovd SO
Google Org Chart

 Tracks 30k+ employees
« 10-100 QPS

O

Disgruntled Pigeons

« Thousands of QPS
* Millions of users
e Billions of ruffled feathers

*DATASTORE

Datastore on Megastore on Bigtable on ...

* All the best features of each layer

O

Datastore

Megastore

Bigtable
GFS v2

*DATASTORE

GFS v2

« Huge Capacity
« Durable

O

Data

*DATASTORE

“DATASTORE
BigTable Load Balancing

« Automatically splits and balances data based on load
* Scales linearly with available resources

Megastore

Works at scale

*DATASTORE

— See 2011 talk “More 9s Please: Under The Covers of the High Replication Datastore”

— 9's are important at scale
Not reliant on a single datacenter
Handles local issues
Handles catastrophic failures

O

/BigTabIe A\
N~ -

/BigTabIeB\
N~ -

Entity

Entity

Scoreboard

Queries v v+
Transactions v v+
Consistency v v+
Scalability v+ v

O

Management

GOUSIC app engine 2 <ail.com | My Account | Help | Sign out

Create an Application

You have 8 applications remaining.

Application Identifier:
[.appspot.com | Check Availability ’

All Google account names and certain offensive or trademarked names may not be used as Application Identifiers.
You can map this application to your own domain later. Learn more

Application Title:

Displayed when users access your application.

Authentication Options (Advanced): Learn more

Google App Engine provides an API for authenticating your users, including Google Accounts, Google Apps , and OpenlD. If you choose to use this feature for some parts of your site,
you'll need to specify now what type of users can sign in to your application:

Open to all Google Accounts users (default)
If your application uses authentication, anyone with a valid Google Account may sign in.
Edit

Storage Options (Advanced):

Google App Engine datastore options.

High Replication (default)

Uses a more highly replicated Datastore that makes use of a system based on the Paxos algorithm to synchronously replicate data across multiple locations simultaneously. Offers the

highest level of availability for reads and writes at the cost of eventual consistency for some queries. Note: High Replication Datastore is required in order to use the Python 2.7 and Go
runtimes.

Edit

Create Application ’ Cancel

GOUSIC app engine G o ail.com | My Account | Help | Sign out

Create an Application

You have 8 applications remaining.

Application Identifier:
sqgl-vs-nosgl .appspot.com | Check Availability ’

All Google account names and certain offensive or trademarked names may not be used as Application |dentifiers.
You can map this application to your own domain later. Learn more

Application Title:
'SQL vs NoSQL |

Displayed when users access your application.

Authentication Options (Advanced): Learn more

Google App Engine provides an API for authenticating your users, including Google Accounts, Google Apps , and OpenlD. If you choose to use this feature for some parts of your site,
you'll need to specify now what type of users can sign in to your application:

Open to all Google Accounts users (default)
If your application uses authentication, anyone with a valid Google Account may sign in.
Edit

Storage Options (Advanced):
Google App Engine datastore options.

High Replication (default)

Uses a more highly replicated Datastore that makes use of a system based on the Paxos algorithm to synchronously replicate data across multiple locations simultaneously. Offers the
highest level of availability for reads and writes at the cost of eventual consistency for some queries. Note: High Replication Datastore is required in order to use the Python 2.7 and Go
runtimes.

Edit

Create Application ‘ Cancel

Gox ;SIC app engine 2o ail.com | My Account | Help | Sign out

Application Registered Successfully

The application will use sql-vs-nosql as an identifier. This identifier belongs in your application's configuration as well. Note that this identifier cannot be changed.
Learn more

The application uses the High Replication storage scheme. Learn more

If you use Google authentication for your application, SQL vs NoSQL will be displayed on Sign In pages when users access your application.
Choose an option below:

+ View the dashboard for SQL vs NoSQL.

+ Use appcfg to upload and deploy your application code.

+ Add administrators to collaborate on this application.

© 2008 Google | Terms of Service | Privacy Policy | Blog | Discussion Forums | Project | Docs

O

Go;)glc app engine G o mail.com | My Account | Help | Sign out

sql-vs-nosql [High Replication] § | No version deployed! Report Production Issue « My Applications
Main @ You need to upload and deploy an application before you can make Web history.
Dashboard Read about using appcfg to upload and deploy one.
Instances Charts @
. No Data Available
Versions <
Backends
Cron Jobs “
Task Queues 3
Quota Details 2
Data 14
Datastore Indexes
Datastore Viewer 0 24hr 18hr 12hr &hr now
Datastore Statistics
Blob Viewer Instances ()
Prospective Search Number of Instances - Details Average QPS Average Latency Average Memory
Text Search
Datastore Admin Billing Status: Free - Settings Quotas reset every 24 hours. Next reset: 14 hrs ®
Memcache Viewer Resource Usage
Administration Current Load) Errors)
Application Settings Runtime Avg URI Count % Errors
Permissions URI Requests MCycles Latency L

last 10 hrs last hr last hr
Blacklist

Admin Logs

Google apis

SQL vs NoSQL v
Dashboard

Overview

Services Project Summary

Kesm Name SQL vs NoSQL

API Access

Billing (1) Project ID Register...
% Google Cloud SQL

Owners IR C g ail.com - you

Current charges Click here to administer your billing settings...

Code Home - Privacy Policy

Google apis

SQL vs NoSQL

Overview
Services
Team
API Access
Billing
% Google Cloud SQL

®

Billing
Billing is not enabled Learn more

Enable billing

Go wgle Checkout =

Unbilled usage (estimate, updated daily)
Start date
Total (before taxes)

Statements
None

Code Home - Privacy Policy

Google apis

SQL vs NoSQL v |
Dashboard
Overview
Services Project Summary Service Status
Heol Name SQL vs NoSQL &S Google Cloud SQL il No known issues
API Access
Billing Project ID Register...
% Google Cloud SQL
Owners I @gmail.com - you

Current charges None

Code Home - Privacy Policy

Google apis

SQL vs NoSQL v | Overview New instance...

Overview -
Overview

Services

Team Create a new instance to get started.
API Access
Billing Leamn more about Google Cloud SQL

% Google Cloud SQL

Code Home - Privacy Policy

New Instance (]

Name: ‘ Required
Size: D1+~

Pricing plan: = Per use «

Leam more about pricing and instance sizes

Authorized applications

1. App Engine application ID

Create instance I Cancel

New Instance

Name: sql-is-better

Size: D1~ |
Pricing plan: = Per use «

Leam more about pricing and instance sizes

Authorized applications

1. | App Engine application 1D
Create Instance Cancel

New Instance (%]

ame:
Size: D1+~ |
Pricing plan: | Per use « |

Leam more about pricing and instance sizes

Authorized applications

1. sqgl-vs-nosq| X
2. App Engine application ID

Create instance | Cancel

Register Project ID

A project ID is a unique, DNS-compatible label similar to a hostname that is used by certain services to locate
your project and access its resources. A project ID is only required when a service you use depends on it.

Your ID will be globally unique.
Once a project ID has been registered, it cannot be changed.

Project ID: | Check availability

6-63 lowercase letters, digits, or hyphens. Must start with a letter. Trailing hyphens are prohibited.

Choose this ID | Cancel I

&

Register Project ID

A project ID is a unique, DNS-compatible label similar to a hostname that is used by certain services to locate
your project and access its resources. A project ID is only required when a service you use depends on it.

Your ID will be globally unique.
Once a project ID has been registered, it cannot be changed.

Project ID: Check availability | @ ID sql-is-better is available!

6-63 lowercase letters, digits, or hyphens. Must start with a letter. Trailing hyphens are prohibited.

Choose this ID | Cancel

B d

Google apis

SQL vs NoSQL

v}l

|| | Creating instance sql-is-better:sql-is-better.

Overview
Services
Team
API Access
Billing
% Google Cloud SQL

Dashboard Logs SQL Prompt Backups

Dashboard for Instance sql-is-better:sql-is-better

Properties
Status: Being created
Version: MySQL 5.5
Size: D1
Pricing Plan: Per use

Replication Type: Synchronous
Disk Usage: unknown / 10 GB

Authorized Applications
sql-vs-nosq|

[Storage Usage (GB) @ m Day | Hour | Minute

All times are UTC.

Instance settings | Actions »

e Count0 | June 01, 2012

New instance...

Google apis

SQL vs NoSQL v | Dashboard Logs SQL Prompt Backups

Overview . .

. Dashboard for Instance sql-is-better:sql-is-better
Services
Properties

Team

API A Status: Running

Billing Version: MySAQL 5.5

ize: D1
% Google Cloud SQL Sha
Pricing Plan: Per use

Replication Type: Synchronous
Disk Usage: 82MB /10 GB

Authorized Applications edit
sql-vs-nosql

| Storage Usage (GB) @m Day = Hour | Minute

All times are UTC.

Instance settings == Actions ~

e Count 0.08 | June 01, 2012

0.075

D11

New instance...

Google apis

SQL vs NoSQL

'| Dashboard Logs SQL Prompt Backups

Overview
Services
Team
API| Access
Billing
% Google Cloud SQL

SELECT ... FROM ... WHERE ...

Instance settings = Actions ~

New instance...

Execute | Database: [performance_schema Pﬂ

Results

Execute an SQL statement to see results.

Code Home - Privacy Policy

Google apis

SQL vs NoSQL

" Dashboard Logs SQL Prompt

Overview
Services
Team
API| Access
Billing
% Google Cloud SQL

CREATE DATABASE test;

Backups Instance settings == Actions ~

Execute | Database: | performance_schema ']

Results

Execute an SQL statement to see results.

Code Home - Privacy Policy

New instance...

Google apis

SQL vs NoSQL

" Dashboard Logs SQL Prompt Backups

Overview
Services
Team
API| Access
Billing
. Google Cloud SQL

CREATE DATABASE test;

Execute | Database: L performance_schema @

Results & 1 rows updated.

CREATE DATABASE test;

Code Home - Privacy Policy

Instance settings = Actions v = New instance...

Jun 20, 2012 10:37 AM (224 ms)

Google apis

SQL vs NoSQL

v | Dashboard Logs SQL Prompt Backups

Overview
Services
Team
API Access
Billing
% Google Cloud SQL

Execute | Database: | performance_schema ' 4|

Results & 1 rows updated.

CREATE DATABASE test;

Code Home - Privacy Policy

Instance settings = Actions + | New instance...

Jun 20, 2012 10:37 AM (224 ms)

Google apis

SQL vs NoSQL

v | Dashboard Logs SQL Prompt Backups

Overview
Services
Team
API| Access
Billing
% Google Cloud SQL

Execute ‘ Database: [performance_schema @

Results & 0 rows updated.

CREATE TABLE t1 (c1 INT, c2 VARCHAR(256));

Code Home - Privacy Policy

Instance settings = Actions v | = New instance...

Jun 20, 2012 10:38 AM (474 ms)

Using Datastore

« No configuration needed

* Just start writing data

» Entity ‘Kinds’ for table

» Namespaces for multi-tenancy/isolation

O

*DATASTORE

Scoreboard

Queries v v+
Transactions v v+
Consistency v v+
Scalability v+ v
Management v+ v

O

Schema

Glovd SO
SQL Schema Change

» Strictly enforced
e Set at table create

O

Glovd SO
Schema Change

sQL
CREATE TABLE Player (name VARCHAR(256), health int);

ALTER TABLE Player ADD COLUMN mana int;

O

Glovd SO
SQL Schema Change

« ALTER TABLE
—Locks the table
— Copies entire table

* Online Schema Change
— Write to new and old table
—Bulk copy

— Rename new table

—Look at Percona’s pt-online-schema-change for an example

O

Datastore Schema Change

- Update code
 Optionally write MapReduce to backfill

class Player(db.Model)
name = db.StringProperty()

health = db.IntegerProperty()
mana = db.IntegerProperty(default=0)

O

“DATASTORE

Scoreboard

Queries v v+
Transactions v v+
Consistency v v+
Scalability v+ v
Management v+ v
Schema v+ v

O

Friends?

DropRectangle.net SQL

e user_id e file_id e file_id
* name e owner _id e user_id
* name * permission

O

DropRectangle.net NoSQL

O

Full support of off-the-shelf

* Frameworks
—Hibernate
—]DO/JPA
—Spring
—Django
» WordPress
 Standards Based Existing Applications

O

Greg's List

Ny

O

Cloud SQL

® (active listings)

(memory)

Datastore
(archived listings)
(disk)

Scoreboard

Queries v v+
Transactions v v+
Consistency v v+
Scalability v+ v
Management v+ v
Schema v+ v

O

<Thank You!>

Questions?

https://developers.google.com/appengine/docs/python/datastore/
https://developers.google.com/cloud-sql/

