







# Secrets of Video Stabilization on YouTube

Matthias Grundmann, Vivek Kwatra, John Gregg

YouTube and Research Team:

Rushabh Doshi, Tom Bridgwater, Gavan Kwan, Alan deLespinasse Eron Steger, Bob Glickstein, Jason Toff, Daniel Castro, Irfan Essa





- Video Stabilization
- Rolling Shutter Removal
- The YouTube Stabilizer



- Video Stabilization
- Rolling Shutter Removal
- The YouTube Stabilizer
- New Upload Enhancement API



### **Casual Video**



### **Casual Video**







### **Casual Video - Stabilized**





### Side By Side Comparison





#### 7





Bushy parkrun flashmob by jed leicester 6,772 views



Peter Pan - Park Run (HULL) 13th A 2013 B by Dave Gowans 180 views



#### **Gunnersbury Parkrun**

by geofftech2 3,560 views



#### parkrun Old Deer Park Richmond #parkrun #boost

by Run247tv 1,241 views



#### Glasgow Parkrun No.62 by Chris Upson

1,526 views



Eastleigh Park Run by Sian Williams 145 views

7









Copy of Elephant Safari Park by Doni Appkey No views



Copy of Rzr 900XP winter run by joel hennigar 49 views



Copy of Flying a P51 - D Mustang a Park Reserve by love2blog



San Diego Zoo Safari Park Cheetah "Toy" TV by mcsaatchila

2,895 views







Copy of Spiral Saturday Clive's first by tmfarnham 18 views

9

### **YouTube Shake Detection and Removal**





### YouTube Shake Detection and Removal







Nerf Super Soaker Thunderstorm W Gun Review by DadDoesBlog 105,492 views



Super Soaker Lightning Storm and Electro Storm Water Gun Review. N



by DadDoesBlog 36,210 views

tutorial: how to make a high powere water gun out of a fire extinguisher by doggiedogood 584 views



Thirsty bulldog gets shot with wate by PETSAMI 72,058 views



Chocolate Milk Water Gun Fight (WI 28.2) by Bratayley



COD4 - Water Gun Mod ? WTF ?

by RKO4Lifex3x 390 views

247,472 views

My ast attacking the printer

10

- Video Stabilization
- Rolling Shutter Removal
- The YouTube Stabilizer
- New Upload Enhancement API



11



Optical / In-camera Stabilization

- Floating lens (electromagnets)
- Sensor shift
- Firmware / ISP based (using accelerometer + gyro)
- Removes high-frequency perturbations (small buffer)





Optical / In-camera **Stabilization** 

- Floating lens (electromagnets)
- Sensor shift
- Firmware / ISP based (using accelerometer + gyro)
- Removes high-frequency perturbations (small buffer)





- Removes low-frequency perturbations (large buffer)
- (cloud computing)



### Post-process **Stabilization**

Distributed backend processing

by NightRStar

Optical / In-camera Stabilization

- Floating lens (electromagnets)
- Sensor shift
- Firmware / ISP based (using accelerometer + gyro)
- Removes high-frequency perturbations (small buffer)





- Removes low-frequency perturbations (large buffer)
- (cloud computing)



### Post-process Stabilization

Distributed backend processing

by NightRStar

• Main steps:



• Main steps:

**Camera Motion** 

Estimate shaky camera path of the video



• Main steps:

**Camera Motion** 

Estimate shaky camera path of the video Path Stabilization



Smooth camera path



• Main steps:

**Camera Motion** 

Estimate shaky camera path of the video Path Stabilization



Smooth camera path





 $\rightarrow$ 

### Synthesize new movie from smoothed viewpoint

• Main steps:

**Camera Motion** 

Estimate shaky camera path of the video Path Stabilization



Smooth camera path



Original video (shaky)

 $\rightarrow$ 



Cropping

### Synthesize new movie from smoothed viewpoint

### **Stable, Virtual Camera**

- Challenge:
  - Can deviate too much from original camera
  - Undefined content (black borders)



### Synthesized from smoothed path

### **Stable, Virtual Camera**

- Challenge:
  - Can deviate too much from original camera
  - Undefined content (black borders)





### Synthesized from smoothed path

## Stable, Virtual Camera

- Challenge:
  - Can deviate too much from original camera
  - Undefined content (black borders)





## **Stabilization By Cropping**

- Solution:
  - Constrain crop to stay within frame bounds
- Guarantee:
  - Never undefined content, avoids borders and inpainting



## **Stabilization By Cropping**

- Solution:
  - Constrain crop to stay within frame bounds
- Guarantee:
  - Never undefined content, avoids borders and inpainting





• Main steps:





#### Cropping

Synthesize new movie from smoothed viewpoint

• Main steps:



Estimate shaky camera path of the video



Smooth camera path

Path Stabilization



 $\rightarrow$ 



#### Cropping

Synthesize new movie from smoothed viewpoint

### **Camera Path Estimation**



### **Camera Path Estimation**

1. Find image corners (high gradient in x & y)




### **Camera Path Estimation**

- 1. Find image corners (high gradient in x & y)
- 2.Track w.r.t. the previous frame





# **Background Motion**

- Only estimate camera motion of background
- Model contribution to background by weighting features



# **Background Motion**

- Only estimate camera motion of background
- Model contribution to background by weighting features

Background Foreground





## **Motion Models**

• Goal: Describe camera motion with fewer degree of freedoms (DOF)



## **Motion Models**

• Goal: Describe camera motion with fewer degree of freedoms (DOF)





## **Motion Models**

• Goal: Describe camera motion with fewer degree of freedoms (DOF)













• Translation in x and y







- Translation in x and y
- 2 DOF





- Translation in x and y
- 2 DOF
- Still very shaky





20







- Translation in x and y
- Uniform scale and rotation







- Translation in x and y
- Uniform scale and rotation
- 4 DOF







- Translation in x and y
- Uniform scale and rotation
- 4 DOF
- Not shaky, but wobbly













- Translation in x and y, scale and rotation
- Skew and perspective







- Translation in x and y, scale and rotation
- Skew and perspective
- 8 DOF





- Translation in x and y, scale and rotation
- Skew and perspective
- 8 DOF
- Stable





22

# **Similarity Model Over Time**

- Four DOF:
  - Translation dx
  - Translation dy
  - Scale
  - Rotation





23

# **Similarity Model Over Time**

- Four DOF:
  - Translation dx
  - Translation dy
  - Scale
  - Rotation









23

## **Post-process Video Stabilization**

• Main steps:





### Cropping

Synthesize new movie from smoothed viewpoint

## **Post-process Video Stabilization**

• Main steps:

**Camera Motion** 

Estimate shaky camera path of the video





### Cropping

Synthesize new movie from smoothed viewpoint





• Goal: Approximate original path with stable one







- Goal: Approximate original path with stable one
- Cinematography inspired: Properties of a stable path?







- Goal: Approximate original path with stable one
- Cinematography inspired: Properties of a stable path?
  - Tripod  $\rightarrow$  Constant segment











- Goal: Approximate original path with stable one
- Cinematography inspired: Properties of a stable path?
  - Tripod  $\rightarrow$  Constant segment











- Goal: Approximate original path with stable one
- Cinematography inspired: Properties of a stable path?
  - Tripod  $\rightarrow$  Constant segment
  - Dolly or pan  $\rightarrow$  Linear segment -











- Goal: Approximate original path with stable one
- Cinematography inspired: Properties of a stable path?
  - Tripod  $\rightarrow$  Constant segment
  - Dolly or pan  $\rightarrow$  Linear segment -











- Goal: Approximate original path with stable one
- Cinematography inspired: Properties of a stable path?
  - Tripod  $\rightarrow$  Constant segment
  - Dolly or pan  $\rightarrow$  Linear segment -
  - Ease in and out transitions  $\rightarrow$ Parabolic segment











- Goal: Approximate original path with stable one
- Cinematography inspired: Properties of a stable path?
  - Tripod  $\rightarrow$  Constant segment
  - Dolly or pan  $\rightarrow$  Linear segment -
  - Ease in and out transitions  $\rightarrow$ Parabolic segment
- Solution: Find constrained partition











- Important constraint: Crop window within frame
- Crop window size = Envelope around original camera path
- Within the envelope: Find partition of constant, linear and parabolic segments



- Important constraint: Crop window within frame
- Crop window size = Envelope around original camera path
- Within the envelope: Find partition of constant, linear and parabolic segments





- Important constraint: Crop window within frame
- Crop window size = Envelope around original camera path
- Within the envelope: Find partition of constant, linear and parabolic segments



### Path Smoothing Demo



### Path Smoothing Demo





### YouTube paths
## **Post-process Video Stabilization**

• Main steps:





### Cropping

Synthesize new movie from smoothed viewpoint

## **Post-process Video Stabilization**

• Main steps:





### Cropping

Synthesize new movie from smoothed viewpoint

# **Stabilization By Cropping**

- Crop is constrained to stay within frame bounds (stable path within envelope)
- Apply virtual crop to yield stable video



# **Stabilization By Cropping**

- Crop is constrained to stay within frame bounds (stable path within envelope)
- Apply virtual crop to yield stable video





original (with crop)





original (with crop)





original





### original



# **Talk Overview**

- Video Stabilization
- Rolling Shutter Removal
- The YouTube Stabilizer
- New Upload Enhancement API



## Motivating example



## Motivating example





# **Motivating result**



original (deliberately shaken)

### rolling shutter removed

## **Motivating result**





original (deliberately shaken)

### rolling shutter removed

34

- Global shutter (CCD sensor)
  - Image read at one instant at time

(cc) BY



by armno\_old



- Global shutter (CCD sensor)
  - Image read at one instant at time

(cc) BY



by armno\_old



- Global shutter (CCD sensor)
  - Image read at one instant at time

(cc) BY



by armno\_old



- Global shutter (CCD sensor)
  - Image read at one instant at time

(cc) BY



by armno\_old







- Rolling shutter (CMOS sensor)
  - Image read one scanline at time





- Rolling shutter (CMOS sensor)
  - Image read one scanline at time





- Rolling shutter (CMOS sensor)
  - Image read one scanline at time





- Rolling shutter (CMOS sensor)
  - Image read one scanline at time





- Rolling shutter (CMOS sensor)
  - Image read one scanline at time





- Rolling shutter (CMOS sensor)
  - Image read one scanline at time





- Rolling shutter (CMOS sensor)
  - Image read one scanline at time





- Rolling shutter (CMOS sensor)
  - Image read one scanline at time





global shutter

Camera motion







### rolling shutter

- Rolling shutter (CMOS sensor)
  - Image read one scanline at time





global shutter

Camera motion







### rolling shutter

36



### Original courtesy of [Baker et al., 2010]





### Original courtesy of [Baker et al., 2010]



### Stabilized without rolling shutter removal [Youtube 2011]





### Stabilized without rolling shutter removal [Youtube 2011]



time





• Difficulty: Speed of readout varies across cameras





- Difficulty: Speed of readout varies across cameras
- Solution: Use multiple motion models





- Difficulty: Speed of readout varies across cameras
- Solution: Use multiple motion models





- Difficulty: Speed of readout varies across cameras
- Solution: Use multiple motion models





- Difficulty: Speed of readout varies across cameras
- Solution: Use multiple motion models




#### Original courtesy of [Baker et al., 2010]





#### Original courtesy of [Baker et al., 2010]



#### Rolling shutter removed [YouTube 2012]





#### Rolling shutter removed [YouTube 2012]







Rectified and Stabilized



Rectified and Stabilized





Side by Side Comparison



original

#### stabilized

#### Side by Side Comparison



#### original



#### stabilized

## **Talk Overview**

- Video Stabilization
- Rolling Shutter Removal
- The YouTube Stabilizer
- New Upload Enhancement API































### Adaptive Shake: Auto Crop



### Adaptive Shake: Auto Crop

• Goal: Maximize image content



## Adaptive Shake: Auto Crop

• Goal: Maximize image content



#### original with crop





#### stabilized result

Uploaded videos often pre-composited



#### Uploaded videos often pre-composited







With active overlay detection



With active overlay detection





#### User responses

- Measure two responses
  - 1) Accept stabilization suggestion?
  - 2) Keeps stabilized video
- Collected over millions of videos



#### **User responses**





#### User responses to our system



Google+ MOTION



Google+ HDR

Google+ MOTION



Google+ HDR

Google+ MOTION





#### Google+ SMILE

Google+ HDR

Google+ MOTION







#### Google+ SMILE
Google+ HDR









#### Google+ SMILE

Google+ HDR

Google+ MOTION







#### Google+ SMILE



52











# **Talk Overview**

- Video Stabilization
- Rolling Shutter Removal
- The YouTube Stabilizer
- New Upload Enhancement API



### **Enhancement UI**



### **Enhancement UI**



# **API - Demo**

<u>http://johns-uploader.appspot.com/</u>

John's Video Uploader

upload a video





56

# **Edit Videos During Upload**

- Two new parameters now available in the YouTube v3 API
- videos.insert.
  - autoLevels applies color correction to video
  - stabilize applies stabilization to video
- Boolean options, YT determines optimal effect parameters
- All edits are performed in the cloud after upload
- Edits can be reverted by the user to restore the original



# **Code Example**

```
insert_request = youtube.videos().insert(
part = "snippet,status",
body = \{
     'snippet': {
         'title': title, 'description': '',
         'tags': '', 'categoryId': 22
         },
     'status': {
         'privacyStatus': 'public'
     },
 media_body=MediaIoBaseUpload(bytes, mimetype, chunksize, resumable),
```



#### Python

# **Code Example - Enhancement Flags**

```
insert_request = youtube.videos().insert(
part = "snippet,status",
body = \{
     'snippet': {
          'title': title, 'description': '',
         'tags': '', 'categoryId': 22
         },
     'status': {
          'privacyStatus': 'public'
     },
 media_body=MediaIoBaseUpload(bytes, mimetype, chunksize, resumable),
 stabilize=self.request.get('stabilize'),
 autoLevels=self.request.get('autoLevels')
```



#### Python

# Summary

- Video Stabilization
  - Cinematography inspired paths
  - Automatic crop size
- Rolling Shutter Removal
  - Calibration free (no camera knowledge)
- The YouTube Stabilizer
  - Distributed system with real-time previews
- Upload Enhancement API
  - Stabilize and color correct in third party applications



60



# <Thank You!>

Matthias Grundmann Vivek Kwatra John Gregg











