

High Performance Apps
With RenderScript

Tim Murray and Jason Sams
Google

Some GPU Background

* GPUs have become useful for a lot more than just graphics
- Lots of FLOPs versus CPUs

- Great at many data parallel tasks
« Growth of GPU compute largely spurred by HPC adoption

* Programmable GPUs are arriving on tablets and phones

O

Desktop/Server System Architecture

200+GB/s 50GB/s
GPBBRS BDBRS
PCle
GPU
~12GB/s
3+TFLOPs ~250GFLOPs

O

Mobile System Architecture

~12GB/s

El— —K3

~70GFLOPs GPU CPU ~20GFLOPs

O

Mobile vs Desktop: Very Different

* Mobile has a lot of architectural diversity
- Lots of CPUs, even more GPUs
- GPUs in particular are extremely different between vendors

« System resources vary statically and dynamically
- CPU/GPU clock speed? Battery? Processor load? Display resolution? Additional processors?

« Goal: high performance applications without sacrificing performance portability

O

RenderScript

 Platform for high-performance computing across different hardware
- APl focused on entire system, not specific devices
- Runtime handles processor selection dynamically

* Provides a consistent target that runs well across all SoCs

- Performance is the objective, not running on a specific processor

* Influenced by other data-parallel runtimes

O

RS at 10,000 Feet

« Performance-critical kernels are written in a C99-based language
- Kernels distributed with APK as architecture-independent bitcode

- Compiled from bitcode to one or more processor targets at runtime
» Java classes automatically generated for easy integration with existing applications

» Resource management and execution handled by Java APIs

O

Basic RS

O

Basic RS

O

Allocation

Basic RS

Type

10

Basic RS

#pragma version(1) // RS language revision, 1 for now
#pragma rs java_package_name(com.rs.102013) // Java package used for reflected classes

int addval = 3; // script global, local to script, reflects set_addVal(int) to Java
// a kernel; reflects forEach_kernel(Allocation, Allocation)

int __attribute__((kernel)) kernel(int in, uint32_t x, uint32_t y) {
return in + addVal;

O

Script Groups

» Allows a group of kernels to be executed as a single call

« Enables the driver to perform various optimizations by knowing the entire workload

- Scheduling across devices, tiling, kernel fusion...

* Significantly faster in some cases today than individual scripts

O

12

Script Groups: An Example

O

Script Groups: An Example

O

Features Coming Soon

« Compatibility library for Gingerbread

rsSetElementAt_<type>

Debug runtime

Additional script intrinsics
YUV Allocations
Improved launch latency

O

15

RS Compatibility Library

» Enables modern RS on devices running Gingerbread or higher

» CPU only, compiles kernels offline for a specific CPU arc

Nitecture

» Devices running modern Android will use the native RS

- With GPU acceleration on appropriate devices

O

ibrary

16

App Walkthroughs: Gaussian Blur, Histogram

» RS isvery good at common image processing tasks
» Gaussian blur is a common task where RS has built-in support

 Histogram demonstrates some more advanced techniques
- Clipped kernel launches
- rsSetElementAt

- Multi-pass processing

O

17

General Image Processing in RS
Step 0: Setup

// Create a Context
RenderScript mRS = RenderScript.create(this);

// Create a RenderScript Allocation to hold the input image.

Allocation inputAllocation = Allocation.createFromBitmap(mRS, myInputBitmap,
Allocation.MipmapControl .MIPMAP_NONE,
Allocation.USAGE_SHARED |
Allocation.USAGE_GRAPHICS_TEXTURE |
Allocation.USAGE_SCRIPT);

// Create an output Allocation, notice the USAGE flags are different

Allocation outputAllocation = Allocation.createFromBitmap(mRS, myOutputBitmap,
Allocation.MipmapControl .MIPMAP_NONE,

Allocation.USAGE_SHARED |
Allocation.USAGE_SCRIPT);

O

)

19

Simple Blur in RS

// RenderScript has built in support for Blur so use that
ScriptIntrinsicBlur mBlur;

// First, we need to create the intrinsic
mBlur = ScriptIntrinsicBlur.create(mRS, Element.U8_4(mRS));

// And now we configure the intrinsic to perform our blur
mBlur.setRadius(20.f);
mBlur.setInput(inputAllocation);

// Now run the blur
mBlur. forEach(outputAllocation);

// Copy the output to our bitmap if necessary
outputAllocation.copyTo(myOutputBitmap) ;

O

O

Histogram

» The algorithm presented does a two step reduction
- The first pass uses a large group of workers
- Each worker has its own independent sum

« A second pass sums the sums from first pass

» Will ignore the rendering pass to save time

O

22

Histogram
Script Globals

// The histogram script requires a number of buffers

// The source and destination images.
rs_allocation gSrc;
rs_allocation gDest;

// A buffer for the intermediate sums
// Integer values, [256][steps] in size

rs_allocation gSums;

// Final sum buffer, Integer, [256] cells in size
rs_allocation gSum;

O

Histogram
Script Globals Continued

// The height and width of the image
int gWidth;
int gHeight;

// The step, which is the number of lines processed by each thread
int gStep;

// The number of steps in total, roughly height / step
int gSteps;

O

Histogram

Kernel for First Pass

// The start of the first kernel
void __attribute__((kernel)) passi(int in, uint x, uint y) {
// Note that x and y will indicate the coordinates of the pixel being processed

// This kernel will be run on a range of x = [@] and y = [0 to steps]

// Clear our output buffer for this thread.
for (int i=0; 1 < 256; i++) {

// Set the value at i,y to @
rsSetElementAt_int(gSums, @, i, y);

O

Histogram

Kernel for First Pass Continued

// Iterate over our image

for (int 1 = @; 1 < gStep; i++) {

O

int py = y*gStep + 1;
if (py >= gHeight) return;

// Walk one scanline

// Compute the y coordinate in the image
// Might be out of range if this is the last step

for (int px=0; px < gWidth; px+t+) {
// Get the pixel and convert to luminance
uchar4 c¢ = rsGetElementAt_uchar4(gSrc, px, py);
int lum = (77 * c.r + 150 * c.g + 29 * c.b) >> 8§;

// Add one to the bucked for this luminance value
int old = rsGetElementAt_int(gSums, lum, y);
rsSetElementAt_int(gSums, old+1, lum, y);

Histogram

Kernel for Second Pass

// This kernel is run on the Sum allocation, so its called once
// for each of the 256 levels

// Note, this is a 1D kernel
int __attribute__((kernel)) pass2(uint x) {
int sum = 0;

// For this level, add in the sum from each of the
// separate partial sums
for (int 1i=0; i < gSteps; it++t) {

sum += rsGetElementAt_int(gSums, x, 1);

// Return the sum for this level. Since this is a kernel
// return value, it will automatically be placed in the allocation.
return sum;

O

Histogram

Rescale Function

// This 1s an invokable function. It will be called single threaded

void rescale() {
// Find our largest bucket value
int maxv = 0;
for (int i=0; 1 < 256; i++) {
maxv = max(maxv, rsGetElementAt_int(gSum, 1));

// Compute the rescale value to to convert bucket values into bar heights.
float overMax = (1.f / maxv) * gHeight;

for (int i=0; i < 256; i++) {
int t = rsGetElementAt_int(gSum, 1);
t = gHeight - (overMax * rsGetElementAt_int(gSum, 1));
t = max(Q, t);
rsSetElementAt_int(gSum, t, 1);

O

Histogram

Java Setup

// Create and load the script
mScript = new ScriptC_histogram(mRS);

// Setup the globals
mScript.set_gWidth(width);

// Create the [256][steps] buffer of integers for the partial sums
Type.Builder tb = new Type.Builder(mRS, Element.I32(mRS));

th.setX(256).setY(steps);
Type t = tb.create();
mSums = Allocation.createTyped(mRS, t);

// Create the 1D [256] buffer for the final Sums
mSum = Allocation.createSized(mRS, Element.I32(mRS), 256);

// Set the buffers for the script
mScript.set_gSums(mSums) ;

O

Histogram

Java: Running the First Pass

// This first pass should be clipped because we want [step] threads not [256][step] threads

// To do this we have the ability to clip our launch
// using a LaunchOptions class
Script.LaunchOptions 1o = new Script.LaunchOptions();

// Set the range in the X dimension to be 0 to 1
// Note: the end is exclusive so this says only run X value 0
lo.setX(9, 1);

// Run the kernel with our launch options

// This will spawn one thread per Y coordinate, each with X=0
mScript.forEach_pass1(mSums, 1lo);

O

Histogram

Java: Running the First Pass

—
h
B

step

31

Histogram

Java: Running the Second Pass

// Once the first pass is complete, we need to add up our partial sums

// The pass?2 launch is unclipped. It spawns one thread per cell in the mSum buffer
// for a total of 256 threads.

mScript.forEach_pass2(mSum);

// Finally, we call our rescale function
mScript.invoke_rescale();

O

N

<Thank You!>

