
13

13

High Performance Apps
With RenderScript

Tim Murray and Jason Sams
Google

Some GPU Background

• GPUs have become useful for a lot more than just graphics
- Lots of FLOPs versus CPUs

- Great at many data parallel tasks

• Growth of GPU compute largely spurred by HPC adoption

• Programmable GPUs are arriving on tablets and phones

2

3

GPU CPU

GDDR5 DDR3

PCIe

~12GB/s

200+GB/s 50GB/s

3+TFLOPs ~250GFLOPs

Desktop/Server System Architecture

4

LPDDR3

GPU CPU

~12GB/s

~70GFLOPs ~20GFLOPs

Mobile System Architecture

ISP DSP

Mobile vs Desktop: Very Different

• Mobile has a lot of architectural diversity
- Lots of CPUs, even more GPUs

- GPUs in particular are extremely different between vendors

• System resources vary statically and dynamically
- CPU/GPU clock speed? Battery? Processor load? Display resolution? Additional processors?

• Goal: high performance applications without sacrificing performance portability

5

RenderScript

• Platform for high-performance computing across different hardware
- API focused on entire system, not specific devices

- Runtime handles processor selection dynamically

• Provides a consistent target that runs well across all SoCs
- Performance is the objective, not running on a specific processor

• Influenced by other data-parallel runtimes

6

RS at 10,000 Feet

• Performance-critical kernels are written in a C99-based language
- Kernels distributed with APK as architecture-independent bitcode

- Compiled from bitcode to one or more processor targets at runtime

• Java classes automatically generated for easy integration with existing applications

• Resource management and execution handled by Java APIs

7

Basic RS

8

int Element

Basic RS

9

int int int int int

int int int int int

int int int int int

Allocation

Basic RS

10

int int int int int

int int int int int

int int int int int

Type

Basic RS

#pragma version(1) // RS language revision, 1 for now
#pragma rs java_package_name(com.rs.io2013) // Java package used for reflected classes

int addVal = 3; // script global, local to script, reflects set_addVal(int) to Java

// a kernel; reflects forEach_kernel(Allocation, Allocation)
int __attribute__((kernel)) kernel(int in, uint32_t x, uint32_t y) {
 return in + addVal;
}

11

RS

Script Groups

• Allows a group of kernels to be executed as a single call

• Enables the driver to perform various optimizations by knowing the entire workload
- Scheduling across devices, tiling, kernel fusion...

• Significantly faster in some cases today than individual scripts

12

13

A

B

C

D

E

Script Groups: An Example

14

A

B

C

D

E

Script Groups: An Example

Features Coming Soon

• Compatibility library for Gingerbread

• rsSetElementAt_<type>

• Debug runtime

• Additional script intrinsics

• YUV Allocations

• Improved launch latency

15

RS Compatibility Library

• Enables modern RS on devices running Gingerbread or higher

• CPU only, compiles kernels offline for a specific CPU architecture

• Devices running modern Android will use the native RS library
- With GPU acceleration on appropriate devices

16

App Walkthroughs: Gaussian Blur, Histogram

• RS is very good at common image processing tasks

• Gaussian blur is a common task where RS has built-in support

• Histogram demonstrates some more advanced techniques
- Clipped kernel launches

- rsSetElementAt

- Multi-pass processing

17

General Image Processing in RS

// Create a Context
RenderScript mRS = RenderScript.create(this);

// Create a RenderScript Allocation to hold the input image.
Allocation inputAllocation = Allocation.createFromBitmap(mRS, myInputBitmap,
 Allocation.MipmapControl.MIPMAP_NONE,
 Allocation.USAGE_SHARED |
 Allocation.USAGE_GRAPHICS_TEXTURE |
 Allocation.USAGE_SCRIPT);

// Create an output Allocation, notice the USAGE flags are different
Allocation outputAllocation = Allocation.createFromBitmap(mRS, myOutputBitmap,
 Allocation.MipmapControl.MIPMAP_NONE,
 Allocation.USAGE_SHARED |
 Allocation.USAGE_SCRIPT);

18

Step 0: Setup

Java

19

Simple Blur in RS

// RenderScript has built in support for Blur so use that
ScriptIntrinsicBlur mBlur;

// First, we need to create the intrinsic
mBlur = ScriptIntrinsicBlur.create(mRS, Element.U8_4(mRS));

// And now we configure the intrinsic to perform our blur
mBlur.setRadius(20.f);
mBlur.setInput(inputAllocation);

// Now run the blur
mBlur.forEach(outputAllocation);

// Copy the output to our bitmap if necessary
outputAllocation.copyTo(myOutputBitmap);

20

Java

21

Histogram

• The algorithm presented does a two step reduction
- The first pass uses a large group of workers

- Each worker has its own independent sum

• A second pass sums the sums from first pass

• Will ignore the rendering pass to save time

22

Histogram

// The histogram script requires a number of buffers

// The source and destination images.
rs_allocation gSrc;
rs_allocation gDest;

// A buffer for the intermediate sums
// Integer values, [256][steps] in size
rs_allocation gSums;

// Final sum buffer, Integer, [256] cells in size
rs_allocation gSum;

23

RS

Script Globals

Histogram

// The height and width of the image
int gWidth;
int gHeight;

// The step, which is the number of lines processed by each thread
int gStep;

// The number of steps in total, roughly height / step
int gSteps;

24

RS

Script Globals Continued

Histogram

// The start of the first kernel
void __attribute__((kernel)) pass1(int in, uint x, uint y) {
 // Note that x and y will indicate the coordinates of the pixel being processed

 // This kernel will be run on a range of x = [0] and y = [0 to steps]

 // Clear our output buffer for this thread.
 for (int i=0; i < 256; i++) {

 // Set the value at i,y to 0
 rsSetElementAt_int(gSums, 0, i, y);
 }

25

RS

Kernel for First Pass

Histogram

 // Iterate over our image
 for (int i = 0; i < gStep; i++) {
 int py = y*gStep + i; // Compute the y coordinate in the image
 if (py >= gHeight) return; // Might be out of range if this is the last step

 // Walk one scanline
 for (int px=0; px < gWidth; px++) {
 // Get the pixel and convert to luminance
 uchar4 c = rsGetElementAt_uchar4(gSrc, px, py);
 int lum = (77 * c.r + 150 * c.g + 29 * c.b) >> 8;

 // Add one to the bucked for this luminance value
 int old = rsGetElementAt_int(gSums, lum, y);
 rsSetElementAt_int(gSums, old+1, lum, y);
 }
 }
}

26

RS

Kernel for First Pass Continued

Histogram

// This kernel is run on the Sum allocation, so its called once
// for each of the 256 levels

// Note, this is a 1D kernel
int __attribute__((kernel)) pass2(uint x) {
 int sum = 0;

 // For this level, add in the sum from each of the
 // separate partial sums
 for (int i=0; i < gSteps; i++) {
 sum += rsGetElementAt_int(gSums, x, i);
 }

 // Return the sum for this level. Since this is a kernel
 // return value, it will automatically be placed in the allocation.
 return sum;
}

27

RS

Kernel for Second Pass

Histogram

// This is an invokable function. It will be called single threaded
void rescale() {
 // Find our largest bucket value
 int maxv = 0;
 for (int i=0; i < 256; i++) {
 maxv = max(maxv, rsGetElementAt_int(gSum, i));
 }

 // Compute the rescale value to to convert bucket values into bar heights.
 float overMax = (1.f / maxv) * gHeight;

 for (int i=0; i < 256; i++) {
 int t = rsGetElementAt_int(gSum, i);
 t = gHeight - (overMax * rsGetElementAt_int(gSum, i));
 t = max(0, t);
 rsSetElementAt_int(gSum, t, i);
 }
}

28

RS

Rescale Function

Histogram

// Create and load the script
mScript = new ScriptC_histogram(mRS);

// Setup the globals
mScript.set_gWidth(width);
...

// Create the [256][steps] buffer of integers for the partial sums
Type.Builder tb = new Type.Builder(mRS, Element.I32(mRS));
tb.setX(256).setY(steps);
Type t = tb.create();
mSums = Allocation.createTyped(mRS, t);

// Create the 1D [256] buffer for the final Sums
mSum = Allocation.createSized(mRS, Element.I32(mRS), 256);

// Set the buffers for the script
mScript.set_gSums(mSums);

29

Java

Java Setup

Histogram

// This first pass should be clipped because we want [step] threads not [256][step] threads

// To do this we have the ability to clip our launch
// using a LaunchOptions class
Script.LaunchOptions lo = new Script.LaunchOptions();

// Set the range in the X dimension to be 0 to 1
// Note: the end is exclusive so this says only run X value 0
lo.setX(0, 1);

// Run the kernel with our launch options
// This will spawn one thread per Y coordinate, each with X=0
mScript.forEach_pass1(mSums, lo);

30

Java

Java: Running the First Pass

31

Histogram
Java: Running the First Pass

int int ... int int

...

int int ... int int

step

Histogram

// Once the first pass is complete, we need to add up our partial sums

// The pass2 launch is unclipped. It spawns one thread per cell in the mSum buffer
// for a total of 256 threads.
mScript.forEach_pass2(mSum);

// Finally, we call our rescale function
mScript.invoke_rescale();

32

Java

Java: Running the Second Pass

33

<Thank You!>

