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Some GPU Background

• GPUs have become useful for a lot more than just graphics
- Lots of FLOPs versus CPUs

- Great at many data parallel tasks

• Growth of GPU compute largely spurred by HPC adoption

• Programmable GPUs are arriving on tablets and phones
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GPU CPU

GDDR5 DDR3

PCIe

~12GB/s

200+GB/s 50GB/s

3+TFLOPs ~250GFLOPs

Desktop/Server System Architecture
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LPDDR3

GPU CPU

~12GB/s

~70GFLOPs ~20GFLOPs

Mobile System Architecture

ISP DSP



Mobile vs Desktop: Very Different

• Mobile has a lot of architectural diversity
- Lots of CPUs, even more GPUs

- GPUs in particular are extremely different between vendors

• System resources vary statically and dynamically
- CPU/GPU clock speed? Battery? Processor load? Display resolution? Additional processors?

• Goal: high performance applications without sacrificing performance portability
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RenderScript

• Platform for high-performance computing across different hardware
- API focused on entire system, not specific devices

- Runtime handles processor selection dynamically

• Provides a consistent target that runs well across all SoCs
- Performance is the objective, not running on a specific processor

• Influenced by other data-parallel runtimes
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RS at 10,000 Feet

• Performance-critical kernels are written in a C99-based language
- Kernels distributed with APK as architecture-independent bitcode

- Compiled from bitcode to one or more processor targets at runtime

• Java classes automatically generated for easy integration with existing applications

• Resource management and execution handled by Java APIs
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Basic RS
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Basic RS
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Basic RS

#pragma version(1) // RS language revision, 1 for now
#pragma rs java_package_name(com.rs.io2013) // Java package used for reflected classes

int addVal = 3; // script global, local to script, reflects set_addVal(int) to Java

// a kernel; reflects forEach_kernel(Allocation, Allocation)
int __attribute__((kernel)) kernel(int in, uint32_t x, uint32_t y) {
    return in + addVal;
}
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Script Groups

• Allows a group of kernels to be executed as a single call

• Enables the driver to perform various optimizations by knowing the entire workload
- Scheduling across devices, tiling, kernel fusion...

• Significantly faster in some cases today than individual scripts
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Features Coming Soon

• Compatibility library for Gingerbread

• rsSetElementAt_<type>

• Debug runtime

• Additional script intrinsics

• YUV Allocations

• Improved launch latency
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RS Compatibility Library

• Enables modern RS on devices running Gingerbread or higher

• CPU only, compiles kernels offline for a specific CPU architecture

• Devices running modern Android will use the native RS library
- With GPU acceleration on appropriate devices
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App Walkthroughs: Gaussian Blur, Histogram

• RS is very good at common image processing tasks

• Gaussian blur is a common task where RS has built-in support

• Histogram demonstrates some more advanced techniques
- Clipped kernel launches

- rsSetElementAt

- Multi-pass processing
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General Image Processing in RS

// Create a Context
RenderScript mRS = RenderScript.create(this);

// Create a RenderScript Allocation to hold the input image.
Allocation inputAllocation = Allocation.createFromBitmap(mRS, myInputBitmap,
                                                         Allocation.MipmapControl.MIPMAP_NONE,
                                                         Allocation.USAGE_SHARED |
                                                         Allocation.USAGE_GRAPHICS_TEXTURE |
                                                         Allocation.USAGE_SCRIPT);

// Create an output Allocation, notice the USAGE flags are different
Allocation outputAllocation = Allocation.createFromBitmap(mRS, myOutputBitmap,
                                                          Allocation.MipmapControl.MIPMAP_NONE,
                                                          Allocation.USAGE_SHARED |
                                                          Allocation.USAGE_SCRIPT);
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Simple Blur in RS

// RenderScript has built in support for Blur so use that
ScriptIntrinsicBlur mBlur;

// First, we need to create the intrinsic
mBlur = ScriptIntrinsicBlur.create(mRS, Element.U8_4(mRS));

// And now we configure the intrinsic to perform our blur
mBlur.setRadius(20.f);
mBlur.setInput(inputAllocation);

// Now run the blur
mBlur.forEach(outputAllocation);

// Copy the output to our bitmap if necessary
outputAllocation.copyTo(myOutputBitmap);
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Histogram

• The algorithm presented does a two step reduction
- The first pass uses a large group of workers

- Each worker has its own independent sum 

• A second pass sums the sums from first pass

• Will ignore the rendering pass to save time
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Histogram

// The histogram script requires a number of buffers

// The source and destination images.
rs_allocation gSrc;
rs_allocation gDest;

// A buffer for the intermediate sums
// Integer values, [256][steps] in size
rs_allocation gSums;

// Final sum buffer, Integer, [256] cells in size
rs_allocation gSum;
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Histogram

// The height and width of the image
int gWidth;
int gHeight;

// The step, which is the number of lines processed by each thread
int gStep;

// The number of steps in total, roughly height / step
int gSteps;
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Histogram

// The start of the first kernel
void __attribute__((kernel)) pass1(int in, uint x, uint y) {
    // Note that x and y will indicate the coordinates of the pixel being processed 

    // This kernel will be run on a range of x = [0] and y = [0 to steps]

    // Clear our output buffer for this thread.
    for (int i=0; i < 256; i++) {

        // Set the value at i,y to 0
        rsSetElementAt_int(gSums, 0, i, y);
    }
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Histogram

    // Iterate over our image
    for (int i = 0; i < gStep; i++) {
        int py = y*gStep + i;          // Compute the y coordinate in the image
        if (py >= gHeight) return;     // Might be out of range if this is the last step

        // Walk one scanline
        for (int px=0; px < gWidth; px++) {
            // Get the pixel and convert to luminance
            uchar4 c = rsGetElementAt_uchar4(gSrc, px, py);
            int lum = (77 * c.r + 150 * c.g + 29 * c.b) >> 8;

            // Add one to the bucked for this luminance value
            int old = rsGetElementAt_int(gSums, lum, y);
            rsSetElementAt_int(gSums, old+1, lum, y);
        }
    }
}
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Histogram

// This kernel is run on the Sum allocation, so its called once
// for each of the 256 levels

// Note, this is a 1D kernel
int __attribute__((kernel)) pass2(uint x) {
    int sum = 0;

    // For this level, add in the sum from each of the 
    // separate partial sums 
    for (int i=0; i < gSteps; i++) {
        sum += rsGetElementAt_int(gSums, x, i);
    }

    // Return the sum for this level.  Since this is a kernel
    // return value, it will automatically be placed in the allocation.
    return sum;
}
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Histogram

// This is an invokable function. It will be called single threaded
void rescale() {
    // Find our largest bucket value
    int maxv = 0;
    for (int i=0; i < 256; i++) {
        maxv = max(maxv, rsGetElementAt_int(gSum, i));
    }

    // Compute the rescale value to to convert bucket values into bar heights. 
    float overMax = (1.f / maxv) * gHeight;

    for (int i=0; i < 256; i++) {
        int t = rsGetElementAt_int(gSum, i);
        t = gHeight - (overMax * rsGetElementAt_int(gSum, i));
        t = max(0, t);
        rsSetElementAt_int(gSum, t, i);
    }
}
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Histogram

// Create and load the script
mScript = new ScriptC_histogram(mRS);

// Setup the globals
mScript.set_gWidth(width);
...

// Create the [256][steps] buffer of integers for the partial sums
Type.Builder tb = new Type.Builder(mRS, Element.I32(mRS));
tb.setX(256).setY(steps);
Type t = tb.create();
mSums = Allocation.createTyped(mRS, t);

// Create the 1D [256] buffer for the final Sums
mSum = Allocation.createSized(mRS, Element.I32(mRS), 256);

// Set the buffers for the script
mScript.set_gSums(mSums);
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Histogram

// This first pass should be clipped because we want [step] threads not [256][step] threads

// To do this we have the ability to clip our launch
// using a LaunchOptions class 
Script.LaunchOptions lo = new Script.LaunchOptions();

// Set the range in the X dimension to be 0 to 1
// Note: the end is exclusive so this says only run X value 0
lo.setX(0, 1);

// Run the kernel with our launch options
// This will spawn one thread per Y coordinate, each with X=0
mScript.forEach_pass1(mSums, lo);
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Histogram
Java: Running the First Pass
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Histogram

// Once the first pass is complete, we need to add up our partial sums

// The pass2 launch is unclipped.  It spawns one thread per cell in the mSum buffer
// for a total of 256 threads.
mScript.forEach_pass2(mSum);

// Finally, we call our rescale function
mScript.invoke_rescale();
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<Thank You!>


