

Web Languages and VMs
or why fast code is always in fashion

Lars Bak & Kasper Lund
Software Engineers at Google Inc.

Hacking on VMs side by side the last 13 years...

Speed fuels application innovation

Web browsers are faster than ever, but are they fast enough?

We will convince you that Dart takes performance to the next level

So Why Are We Here?

Remember the Browsers of 2006?

Firefox 2.0 Internet Explorer 7.0 Opera 9.0Safari 2.0

1998 2000 2002 2005 20082006

Browsers were believed to be "fast enough"
● Web apps like Gmail and Google Maps ran fine
● JavaScript was inherently too slow for heavy client side computations
● JavaScript execution was not perceived as a bottleneck

Performance was evaluated using micro-benchmarks
● Emphasis was put on loops and simple arithmetic
● Dynamic dispatching and memory management were sadly neglected

Browser Performance Beliefs in 2006

JavaScript

SunSpider: bitwise-and
Benchmark from SunSpider version 0.9.1

bitwiseAndValue = 4294967296;
for (var i = 0; i < 600000; i++)
 bitwiseAndValue = bitwiseAndValue & i;

JavaScript

SunSpider: bitwise-and
Benchmark from SunSpider version 0.9.1

bitwiseAndValue = 4294967296;
for (var i = 0; i < 600000; i++)
 bitwiseAndValue = bitwiseAndValue & i;

... but this always yields zero?

JavaScript

SunSpider: bitwise-and
Benchmark from SunSpider version 1.0

bitwiseAndValue = 4294967296;
for (var i = 0; i < 600000; i++)
 bitwiseAndValue = bitwiseAndValue & i;
if (bitwiseAndValue != 0) throw "ERROR: bad result...";

... and this always yields zero!

(1) Optimize for current apps and benchmarks
● Simple and incremental approach
● Attempt to make things 10% better

(2) Optimize for the apps of the future
● Support heavy client side computations
● Turn the browser into a scalable application platform
● Enables a new class of web apps

V8 Design Choice: What to Optimize For?

Consists of benchmarks that are
● Structured and mostly object-oriented
● Designed to push the limits
● Proven valuable in the context of other languages

Measures the performance of
● Dynamic method calls and property accesses
● Memory management
● Closure creation and invocation

V8 Benchmark Suite

Performance improvements from 2006 - 2013
● JavaScript executes more than 100x faster
● Average heap sizes are up and GC pauses are down
● Benchmark numbers are frequently reported in the press

Web apps have become huge
● amazon.com ~ 600K JavaScript
● cnn.com ~1500K JavaScript
● espn.com ~ 900K JavaScript

Up, Up and Away!

No matter how fast the web engines get, the extra performance is
devoured by inventive web developers

Where Is the Time Spent Today?

Gmail
Google Docs
Google Search
Google Calendar

Twitter
Facebook
YouTube
Wikipedia

Blink
V8

Blink

V8

Web developers are pushing the limits and demand
● Predictable and higher performance
● Consistent frame rates for games
● Support for large scale app development

It only took a 100x performance increase to change people's expectations

Let's take a look at the current web technology stack and see how we can
improve it!

The Web Anno 2013

Modern Web Engine Technology
and where does it come from?

What's Behind a Web App?

DOM

JavaScript engine

function ...

Hopes
● Low startup latency
● High performance
● Low memory usage
● Small pauses

Fears
● Big GC pauses
● Memory leaks
● Erratic performance

Picture of a JavaScript Engine Anno 2006

Parser
Interpreter
Simple memory management system

Simple but sloooooow...

Picture of a Modern JavaScript Engine

Parsing
Multi-tier adaptive compilation
Deoptimization
Generational garbage collection
Code flushing
Debugging and profiling support

Complex but fast...

How is JavaScript code made fast?
 Multi-tier adaptive compilation

How do we handle large object heaps?
 Generational garbage collection with a twist

How do JavaScript objects bind to DOM nodes?
 Tracing GC tangoing with reference counting

Let's Look Inside the V8 Engine

JavaScript
source code

Multi-tier Adaptive Compilation

sea of
JavaScript
methods

Simple
native code

Optimized
native code

when first
invoked

when hot

when wrong

when unused when unused

inline
caches

Runtime type feedback
Aggressive inlining
Deoptimization
On-the-fly code patching
Object morphingm

o
v

[
e
b
p
+
0
x
f
4
]
,
e
d
x

m
o
v

e
a
x
,
[
e
b
p
+
0
x
f
c
]

m
o
v

[
e
b
p
+
0
x
e
0
]
,
e
a
x

m
o
v

e
s
i
,
e
a
x

c
m
p

e
s
p
,
[
0
x
9
c
f
f
7
f
4
]

j
n
c

7
6

c
a
l
l

0
x
3
2
8
1
3
1
a
0

c
a
l
l

0
x
3
2
8
1
3
1
a
0

c
a
l
l

0
x
3
2
8
2
b
b
c
0

m
o
v

e
a
x
,
0
x
3
d
8
0
8
0
9
1

No

History of dynamic language execution
● Interpretation, 59-62: Lisp
● Dynamic compilation, 70: Smalltalk 80

○ Inline caching check in callee methods
● Adaptive compilation, 90: Self

○ Mixed-mode execution, runtime type feedback, adaptive optimizations
○ Deoptimization and on-stack replacement
○ First appeared commercially in the Hotspot JVM

Introducing behind-the-scene classes in V8 allowed us to use all this!

Did We Invent Multi-tier Adaptive Compilation?

N
ew

 s
pa

ce
Generational Garbage Collection with a Twist

From To

O
ld

 s
pa

ce

Atomic dataNative code

Objects

● Stop-the-world single
threaded

● Store buffer enables
generations

● Age-based promotion
● Incremental marking in

old space

N
ew

 s
pa

ce
Generational Garbage Collection with a Twist

From To

● Stop-the-world single
threaded

● Store buffer enables
generations

● Age-based promotion
● Incremental marking in

old space

O
ld

 s
pa

ce

Atomic dataNative code

Objects

No

History of automatic memory management
● Garbage collection, 58: Lisp
● Incremental garbage collection, 75: Lisp
● Generational scavenging, 83-84: Smalltalk

This is relatively simple compared to interacting with the browser
● Nodes in the DOM are reference counted
● JavaScript objects are traced

Did We Invent Generational Garbage Collection?

Tracing GC Tangoing with Reference Counting

DOM: Reference counting

V8: Tracing GC

+2

Warning: any cycles between the segments results in memory leaks

weak

Setup
● Three pointer pairing
● JavaScript wrapper objects are referred through handles
● JavaScript wrapper objects are reclaimed in DOM

groups to avoid object resurrection

Problems
● DOM code cannot have cycles
● To avoid cycles, raw pointers are used
● Substantial processing overhead

It works but it is brittle and really hard to maintain

+1

Yes

We are not proud of it and we believe it needs more work
We will get back to what we are doing about this later

Did We Invent This Morass?

Advanced compilation and runtime tricks have been used
● Hidden classes
● State-of-the-art adaptive compilation
● Sophisticated memory management

Yet real bottlenecks still exist
● Performance does not match 'real' languages
● Performance is unpredictable
● Startup is slow
● JavaScript is still ... JavaScript

The V8 project is still vibrant but innovation is needed for the next level

Does This Mean V8 Is As Good As It Gets?

Bigger is better!

V8: Performance Over Time

S
co

re

Chrome version

Is bigger better?

V8: Complexity Over Time

Timeline

Li
ne

s
of

 c
od

e

Welcome to The Dart Side
back to the future

● Class-based
● Familiar syntax
● Optional types

Dart Programming Language

Syntax
JavaScript

Objects
Smalltalk

Concepts
C#

Isolates
Erlang

Dart =
Types

Strongtalk

Dart

A Taste of Dart
Easy to understand, familiar syntax

import 'dart:html';

main() {
 var button = new ButtonElement();
 button.text = 'Click me!';
 document.body.children.add(button);
}

● More scalable development platform
● Higher performance and faster startup
● Toolable with static type checking
● Useful and consistent libraries

A translator from Dart to JavaScript makes it run in all modern browsers...

What Are We Trying to Achieve with Dart?

“The parts fit together and make sense. They are
pragmatic and unsurprising. Exactly what I need to be
productive. I can’t describe in words how liberating it feels
to have a consistent web development experience that
makes sense.”

Thomas Schranz

Founder of Blossom

● Straightforward language semantics
● Much simpler object model
● Programs are declared, not constructed at runtime
● Fewer special corner cases to worry about

Why is Dart Already Faster than JavaScript?

Example Demonstrating Why Dart Is Fast

Dartfunction A() {}
A.prototype.foo = function() { print("foo") }

function B() { A.call(this) }
B.prototype = new A()

var b = new B()
b.foo()

class A {
 foo() => print("foo");
}

class B extends A {}

var b = new B();
main() { b.foo(); }

JS

Modifying the program structure at runtime is costly

B.prototype.foo = function() { print("new foo") }
b.foo()

Detecting Changes in the Prototype Chain

b

B.prototype

A.prototype foo = function() { print("foo") }

b.foo()

foo = function() { print("new foo") }

In JavaScript, you have to either validate or keep track of dependencies

None of this is needed in Dart!

Simpler Language Results in Less Generated Code

Dartfunction bench() {
 for (var i = 0; i < 100000; i++) b.foo()
}

JS bench() {
 for (var i = 0; i < 100000; i++) b.foo();
}

V8 compiler generates
● 281 bytes of common code +
● 239 bytes of stubs

Dart VM compiler generates:
● 103 bytes of common code +
● 57 bytes of stubs

m
o
v

e
d
x
,
(
n
i
l
)

t
e
s
t

e
s
p
,
0
x
4

j
n
z

4
4

p
u
s
h

0
x
0

m
o
v

e
b
x
,
e
s
p

m
o
v

e
d
x
,
0
x
2

m
o
v

e
c
x
,
0
x
3

m
o
v

e
a
x
,
[
e
b
x
+
0
x
4
]

m
o
v

[
e
b
x
]
,
e
a
x

a
d
d

e
b
x
,
0
x
4

d
e
c

e
c
x

j
n
z

2
7

m
o
v

[
e
b
x
]
,
0
x
1
2
3
4
5
6
7
8

p
u
s
h

e
b
p

m
o
v

e
b
p
,
e
s
p

p
u
s
h

e
s
i

p
u
s
h

e
d
i

s
u
b

e
s
p
,
0
x
1
8

m
o
v

[
e
b
p
+
0
x
f
4
]
,
e
d
x

m
o
v

e
a
x
,
[
e
b
p
+
0
x
f
c
]

m
o
v

[
e
b
p
+
0
x
e
0
]
,
e
a
x

m
o
v

e
s
i
,
e
a
x

c
m
p

e
s
p
,
[
0
x
9
c
f
f
7
f
4
]

j
n
c

7
6

c
a
l
l

0
x
3
2
8
1
3
1
a
0

j
m
p

1
1
0

m
o
v

e
a
x
,
[
e
b
p
+
0
x
f
c
]

m
o
v

e
c
x
,
[
e
b
p
+
0
x
e
4
]

t
e
s
t
_
b

c
l
,
0
x
1

j
n
z

2
8
4

s
a
r

e
c
x
,
1

m
o
v

e
b
x
,
[
e
b
p
+
0
x
f
0
]

m
o
v

e
d
x
,
[
e
b
p
+
0
x
e
c
]

x
c
h
g

e
a
x
,

e
c
x
0
x
3
2
8
2
c
3
2
9

m
o
v

e
b
x
,
[
e
b
p
+
0
x
c
]

m
o
v

e
d
x
,
[
e
b
p
+
0
x
8
]

m
o
v

e
c
x
,
[
e
b
p
+
0
x
e
0
]

x
o
r

e
a
x
,
e
a
x

t
e
s
t

e
d
x
,
0
x
1

j
z

4
9
8

c
m
p

[
e
d
x
+
0
x
f
f
]
,
0
x
4
4
a
1
0
8
c
1

j
n
z

5
0
3

m
o
v

e
s
i
,
[
0
x
2
c
0
0
a
6
f
c
]

c
m
p

e
a
x
,

0
x
1
8
6
a
0

j
n
l

2
5
8

c
m
p

e
s
p
,
[
0
x
9
c
f
f
7
f
4
]

j
c

3
3
1

m
o
v

e
s
i
,
[
e
d
x
+
0
x
b
]

t
e
s
t

e
s
i
,
0
x
1

j
n
z

3
5
3

s
a
r

e
s
i
,
1

a
d
d

e
s
i
,
0
x
1

j
o

5
0
8

a
d
d

e
s
i
,
e
s
i

j
o

4
0
0

m
o
v

[
e
d
x
+
0
x
b
]
,
e
s
i

t
e
s
t

e
s
i
,
0
x
1

j
z

2
5
3

l
e
a

e
d
i
,
[
e
d
x
+
0
x
b
]

a
n
d

e
s
i
,
0
x
f
f
f
0
0
0
0
0

t
e
s
t
_
b

[
e
s
i
+
0
x
c
]
,
0
x
4

j
z

2
5
3

m
o
v

e
s
i
,
0
x
f
f
f
0
0
0
0
0

a
n
d

e
s
i
,
e
d
x

t
e
s
t
_
b

[
e
s
i
+
0
x
c
]
,
0
x
8

j
z

2
5
3

c
a
l
l

0
x
3
2
8
2
b
b
c
0

a
d
d

e
a
x
,
0
x
1

j
m
p

1
5
2

m
o
v

e
a
x
,
0
x
3
d
8
0
8
0
9
1

m
o
v

e
d
x
,
[
e
b
p
+
0
x
f
4
]

m
o
v

e
s
p
,
e
b
p

p
o
p

e
b
p

c
m
p

e
d
x
,
0
x
0

j
z

2
8
1

r
e
t

0
x
c

r
e
t

0
x
8

● Easier to make fast
● Less generated code
● Predictable performance
● Better memory utilization

Simpler Language Just Makes Sense

Kee
p it

sim
ple!

Object-oriented performance predictors
● Richards
● DeltaBlue

Used in the past for
● Self
● Strongtalk
● Hotspot JVM
● CLDC HI
● V8

... and now Dart!

Let's Benchmark This Thing!

Richards Dart VM

V8

NowA year ago

Pe
rf

or
m

an
ce

 s
co

re

OS kernel simulation
benchmark, originally
written in BCPL by
Martin Richards.

V8 has tuned for this
benchmark the last six
years.

Intel Core i5, ia32, Linux

dart2js

DeltaBlue
Dart VM

V8

A year ago

Pe
rf

or
m

an
ce

 s
co

re

One-way constraint
solver, originally
written in Smalltalk by
John Maloney and
Mario Wolczko.

V8 has tuned for this
benchmark the last six
years.

Now

Intel Core i5, ia32, Linux

dart2js

“I've been using Dart for the past few months and have
seen my productivity increase. The Dart platform, along
with its excellent tooling, made Glyph3D development a
pleasant experience.”

Ali Akbar

Author of Glyph3D

Including Dart Makes Memory Management Worse

DOM

JavaScript V8 engine

Three independent GCs
● DOM objects are reference counted
● V8 objects are traced
● Dart objects are traced

Impossible to guarantee unused objects are reclaimed
This implies memory leaks

Dart VM engine

Make all objects subject to tracing
● Eliminate reference counting in the DOM
● Eliminate three pointer pairing and DOM grouping
● Unused objects are guaranteed to be reclaimed

Additional benefits
● Smaller memory footprint
● Entire web application can be serialized
● Concurrent manipulation of the DOM is possible

Oilpan development just started

Oilpan: A Unified Memory Manager for Blink

Modern CPUs support SIMD - Single Instruction Multiple Data
● Dart VM generates code that uses the instructions
● New addition to the web platform!

Where can it be used?
● 3D calculations
● Image processing
● Audio processing

Demo: Google Chrome with Dart VM running 3D skeleton animation

Accelerating Dart Using SIMD

Performance is always in fashion
● Dart takes web performance to the next level
● Dart on the VM is now faster than JavaScript
● Higher performance means more innovation headroom for web apps

Dart's core platform is stable, and you can start using it today
● Dart works across all modern browsers by compiling to JavaScript
● Dart makes you more productive when working with large apps

Google is committed to Dart!

Summary

What's New in Dart: Your First-class Upgrade to Web Development
Today, 12:45 PM - 1:25 PM in room 6 (Seth Ladd, Justin Fagnani)

Dart's DOM of the Future, Today!
Today, 3:30 PM - 4:10 PM in room 6 (Sigmund Cherem, Emily Fortuna)

Code Lab: Mobile Web Apps with Dart and Web Components
Friday, May 17, 9:00 AM - 11:00 AM in room 1 (Andrei Mouravski)

More Dart @ Google IO

Questions?

Thank You!

References to Research Papers

● E. W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, E. F. M.
Steffens. 1976. On-the-fly Garbage Collection: An Exercise in Cooperation.

● Dave Ungar. 1984. Generation Scavenging: A Non-disruptive High
Performance Storage Reclamation Algorithm.

● Urs Hölzle, Craig Chambers, David Ungar. 1992. Debugging Optimized
Code with Dynamic Deoptimization.

● Urs Hölzle. 1994. Adaptive Optimization for Self: Reconciling High
Performance with Exploratory Programming.

● Richard E. Jones, Rafael Lins. 1996. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management.

● Kentaro Hara. March, 2013. What Percentages of Real-world JavaScript
Execution are Charged on What.

