
Developers

A Trip Down Memory Lane with Gmail
and Chrome DevTools
Effective Memory Management

Loreena Lee & John McCutchan

Performance vs. Memory

So what? You've got 24GB on your machine!

Yeah, but my grandma's Chromebook only has 4GB.

My Gmail tab is using a gig of RAM.

When it comes down to the age-old performance vs. memory
tradeoff, developers usually opt for performance.

● Lack of actual memory data
● Anecdotes of huge memory footprints
● Uncontrolled memory growth for common actions
● Analysis tools that didn't scale up to Gmail

Gmail, we have a problem...

Not just Gmail's problem

Before we can tackle this problem...

 we need to go back to basics.

Where do we start?

Memory Management Basics

● What types of values are there?

● How are values organized in memory?

● What is garbage?

● What is a leak?

Core Concepts

● boolean
○ true or false

● number
○ double precision IEEE 754 number

● string
○ UTF-16 string

● objects
○ associative array

● external objects
○ DOM nodes, image data, ...

JavaScript value types

The value graph

Root Node

Object Node

Scalar Node

A value's retaining path(s)

Removing a value from the graph

What is garbage?

● Garbage: All values which cannot be reached from the root node.

1. Find all live values
2. Return memory used by dead values to system

What is garbage collection?

A value's retained size

A value's retained size

A value's retained size

● A value that erroneously still has a retaining path
○ Programmer error

Leaks in JavaScript

email.message = document.createElement("div");

display.appendChild(email.message);

JavaScript

Leaking DOM Node

email

message
Div Node

Child Node

display

Child Node

Child Node

Native Reference

Leaks in JavaScript

// ...

display.removeAllChildren();

JavaScript

Leaking DOM Node

email

message
Div Node

display

● Values are organized in a graph

● Values have retaining path(s)

● Values have retained size(s)

Memory Management Basics

V8 Memory Management
A GC Pause Walkthrough

● Every call to new or implicit memory allocation
○ Reserves memory for object
○ Cheap until...

● Memory pool exhausted
○ Runtime forced to perform a garbage collection
○ Can take milliseconds (!)

● Applications must be careful with object allocation patterns
○ Every allocation brings you closer to a GC pause

Where is the cost in allocating memory?

● Generational
○ Split values between young and old
○ Overtime young values promoted to old

How does V8 manage memory?

Young Values Old Values
Long Lived Values

● Young Generation
○ Fast allocation
○ Fast collection
○ Frequent collection

How does V8 manage memory?

Young Values

● Old Generation
○ Fast allocation
○ Slower collection
○ Infrequently collected

How does V8 manage memory?

Old Values

● Parts of collection run concurrently with mutator
○ Incremental Marking

● Mark-sweep
○ Return memory to system

● Mark-compact
○ Move values

● Why is collecting the young generation faster
○ Cost of GC is proportional to the number of live objects

How does V8 manage memory?

Young Generation Collection Old Generation Collection

High death rate (~80%)

Young Generation In Action

To Space

From Space
Used during GC

Values allocated from here

Young Generation In Action

Unallocated memory

From Space

Young Generation In Action

A Unallocated memory

From Space

Allocate A

Young Generation In Action

A Unallocated memory

From Space

B

Allocate B

Young Generation In Action

A Unallocated memory

From Space

B C

Allocate C

Unallocated
memory

Young Generation In Action

A D

From Space

B C

Allocate D

Young Generation In Action

A D

From Space

B C E

Not enough room
for E

Unallocated
memory

Young Generation In Action

A D

From Space

B C

Collection Triggered

Page paused

To Space

Unallocated
memory

Young Generation In Action

A DB C

From and To space are swapped

To Space

Unallocated
memory

Young Generation In Action

A DB C

Live Values are found

To Space

Unallocated
memory

Young Generation In Action

A DB C

To Space

Unallocated
memory

Young Generation In Action

A DB C

Live
Values
Copied

From Space

To Space

Young Generation In Action

A C Unallocated memory

Unallocated
memoryA DB C

From Space

To Space

Young Generation In Action

A C Unallocated memory

From Space

To Space

Young Generation In Action

A C Unallocated
memoryE

Allocate E

● Each allocation moves you closer to a collection
○ Not always obvious when you are allocating

● Collection pauses your application
○ Higher latency
○ Dropped frames
○ Unhappy users

How does V8 manage memory?

Tools & Techniques

Collecting field measurements

window.performance.memory
● Enabled by default in Chrome 22
● 3 values returned:

○ jsHeapSizeLimit - the amount of memory (in bytes) that the JavaScript heap is limited to
○ totalJSHeapSize - the amount of memory (in bytes) that the JavaScript heap has allocated,

including free space
○ usedJSHeapSize - the amount of memory (in bytes) currently being used

Data
Logs

Dashboard

~30 min

JS Heap Size
(Live , Total)

Performance/Memory Tradeoff?

● Common belief:
More Memory == Better Performance

● Reality:

Increased memory footprint correlates with increased latencies and variance

m
em

or
y

timetime

la
te

nc
y

Chrome Developer Tools

DevTools Memory Timeline

forced GC

forced GC

leaked
nodes

more
leaked
nodes

DevTools Object Tracker

NEW!

DevTools Object Tracker

Color-coded bars
identify new objects
allocated during the

timeline

DevTools Object Tracker

Adjustable timeframe
selector

DevTools Object Tracker

Heap
contents

Demo

● A simple mail-like app
● Messages are cached for better performance
● Cache size: 5 messages

In theory, no more than 5 messages should
be resident in memory at any given time...

The Setup

Is it really worth it?

Where are we now?

Memory leak
fixes start
to roll out

Chrome GC
regressions

 2012

MB

x

2x

3x

4x

median

90th %ile

95th %ile

99th %ile

Call to Action

m
em

or
y

timetime

la
te

nc
y

Ask yourself these questions:

● How much memory is your page using?

● Is your page leak free?

● How frequently are you GCing?

Call to Action

Chrome Developer Tools

● window.performance.memory

● Heap Profiler

● Object Tracker
○ Continuous Snapshot Technique

Call to Action

<Thank You!>
Questions!
Be sure to visit Chrome DevRel Office Hours

loreena@google.com johnmccutchan@google.com
google.com/+LoreenaLee google.com/+JohnMcCutchan

twitter.com/johnmccutchan

DEMO
● Source: http://goo.gl/uI4D4

ENABLE THE DEVTOOLS OBJECT TRACKER
● Get the latest Chrome Canary
● Go to about:flags and enable the Chrome Developer Tools Experiments
● Restart Chrome
● Open DevTools
● Click on Gear > Experiments > Enable heap objects tracking profile type
● Restart DevTools
● The profile panel will now have a 4th snapshot type: Track Allocations

Try the Object Tracker

