

Point, Click, Tap, Touch
Building Multi-Device Web Interfaces

Boris Smus
Rick Byers

Most mobile devices have touch.

Mobile use projected to overtake
desktop use by 2014.

~25% of Windows 8 laptop sales
have a touchscreen.
Source: The Guardian http://goo.gl/PVL6o

Touch screens are everywhere

Source: Display Search http://goo.gl/5OhKS

Touch Screen Module Revenue Forecast

http://goo.gl/PVL6o
http://goo.gl/5OhKS

touchstart, touchmove, touchend, touchcancel

(eg. scrolling on android).

Touches on the screen have consistent identifiers.

Works for mobile as well as touch on desktop.

Good support across modern mobile browsers (iOS, Android, etc).

Most touch devices support 10+ simultaneous points.
DEMO

The web has a powerful touch event API

http://borismus.github.io/mobile-web-samples/io13/paint/
http://borismus.github.io/mobile-web-samples/io13/paint/

Design suggestions

1. Physical size ≠ device pixels (pixels per inch)
2. Device pixels ≠ CSS pixels (device pixel ratio)

Tip 1: Touch interfaces require bigger targets

Device Calculation Size in px

Nexus 4 1/(device pixel ratio) (dpi) (inch per mm) (phys size) =
(1/2 cps/dpx) (320 dpx/in) (1/25.4 in/mm) (9 mm) 57 px

Nexus 7 (1/1.325) 216 (1/25.4) 9 58 px

Nexus 10 (1/2) 300 (1/25.4) 9 53 px

Chromebook Pixel (1/2) 239 (1/25.4) 9 42 px

9x9
mm

Optimal touch target size range is 42 to 58 px.

CSS hover (:hover), JS hover (mouseover/mouseout)

Touch has no true hover state, but browsers fake it on tap.

Avoid hover, especially with underlying links.

DEMO

Tip 2: Don't rely on hover

http://borismus.github.io/mobile-web-samples/io13/hover/
http://borismus.github.io/mobile-web-samples/io13/hover/

Responsive input

Maps

Object transforms

Source: smus.com

Touch laptops enable new interactions

http://borismus.github.com/touch-laptop-experiments/responsive
http://borismus.github.com/touch-laptop-experiments/responsive
http://borismus.github.com/touch-laptop-experiments/map
http://borismus.github.com/touch-laptop-experiments/map
http://borismus.github.com/touch-laptop-experiments/transform
http://borismus.github.com/touch-laptop-experiments/transform
http://smus.com/touch-laptop-experiments/
http://www.youtube.com/watch?v=rcE2z9tudGw

Avoiding Common Problems

Problem 1: Assuming touch support implies no mouse

JS

if ('ontouchstart' in window)

 element.addEventListener('touchstart', activate);

else

 element.addEventListener('mousedown', activate);

Breaks mouse input on touchscreen laptops!

Example

http://www.kqed.org/news/politics/election2012/statepropositions-guide.jsp
http://www.kqed.org/news/politics/election2012/statepropositions-guide.jsp

Call preventDefault in the touch handler to avoid redundant mouse events.

DEMO

Solution: Listen to both mouse and touch events

JSelement.addEventListener('touchstart', activate);

element.addEventListener('mousedown', activate);

function activate(event) {

 ...

 event.preventDefault();

}

http://jsbin.com/esirew/14/edit
http://jsbin.com/esirew/14/edit

You can test that you haven't broken mouse support by enabling the flag:

We hope to turn this on by default when more sites fix this bug.

Solution: Enable touch event support to test

MouseEvent targets the element under the cursor

1. mousedown
2. mousemove*
3. mouseout

4. mouseover
5. mousemove*
6. mouseup

TouchEvent targets the node where the touch started

1. touchstart
2. touchmove*
3. touchend

Problem 2: Touch event targeting isn't the same as mouse

Even when it's moved or removed!

Solution: Put handlers directly on the touched element

 Demo element removal

JSelement.addEventListener('touchstart', function(event) {

 ...

 event.target.addEventListener('touchmove', onMove);

 event.target.addEventListener('touchend', onEnd);

 event.target.addEventListener('touchcancel', onEnd);

}

Necessary only when it could be removed or moved in the DOM

http://jsbin.com/iseyuy/17/edit

Touch center point too imprecise for targeting

Problem 3: Making it harder to hit small targets

target

distance to
target

relative
overlap

touchend position
tap contact
bounding box

Chrome provides "touch adjustment"
On gestures (tap, long-press, etc.)
● Score all touchable elements under the finger
● Adjust position to the most likely target

Touch events themselves are never modified

Demo

adjusted click event

http://www.rbyers.net/touchAdjustment.html
http://www.rbyers.net/touchAdjustment.html

Solution: put click handlers on each tappable element

For touch adjustment to work properly:

1. Activation must rely on 'click'
(or 'contextmenu', 'mousedown', 'mouseup', or :active)

2. Each activatable element must have its own event handler
(or other signal indicating it's tappable)

Extra effort is required for #2 if you rely on event delegation
Demo: Gmail star

https://mail.google.com/

Problem 4: Gesture APIs are browser specific

GestureEvent

MSGesture

Not another proprietary gesture API!

How to detect pinch, rotate, etc?

 Several libraries doing this well cross-browser today, eg: Hammer.js

Solution: Rely on libraries for gesture detection

JSHammer(element).on('transformstart', function(event) { ... }

Hammer(element).on('transform', function(event) {

 update(event.gesture.scale, event.gesture.rotation);

}

Hammer(element).on('transformend', function(event) { ... }

DEMO

Many others, eg:
● TouchSwipe jQuery plugin
● Touchy jQuery plugin
● QUO JS
● Deeptissue JS

http://eightmedia.github.io/hammer.js/
http://www.rbyers.net/hammer-demo.html
http://www.rbyers.net/hammer-demo.html
http://labs.rampinteractive.co.uk/touchSwipe/demos/
http://labs.rampinteractive.co.uk/touchSwipe/demos/
http://touchyjs.org/
http://touchyjs.org/
http://quojs.tapquo.com/
http://quojs.tapquo.com/
http://deeptissuejs.com
http://deeptissuejs.com

Performance

Implemented for double-tap-to-zoom gesture.

Approx. 300ms delay of click event on most touch-enabled browsers.

Causes pages to feel slow or unresponsive.

Problem 5: the click event is delayed on mobile devices

Fastclick libraries listen for touchend instead.

In Chrome desktop, no click delays at all.

In Chrome for Android, no delays for fixed viewports (user-scalable=no).

Make sure your fastclick library knows that!
(eg. https://github.com/ftlabs/fastclick)

Solution: use a good fastclick library

https://github.com/ftlabs/fastclick

Often much faster than 60 Hz (render speed)

Movements of many fingers may get coalesced into one touchmove event, but
very platform-dependent.

Impact varies depending on browser. DEMO

JSfunction renderEverything(event) {

 // TODO: Render code goes here.

}

document.addEventListener('touchmove', renderEverything);

Problem 6: touchmove can fire very quickly

http://borismus.github.io/mobile-web-samples/io13/handler-logic/

Do not re-render event.touches array on touchmove.

Store event.touches and use requestAnimationFrame.

Solution: avoid expensive operations in event handlers

JSfunction updateTouches(event) { touches = event.touches; }

document.addEventListener('touchmove', updateTouches);

window.requestAnimationFrame(renderEverything);

function renderEverything() {

 // TODO: Render code goes here.

 window.requestAnimationFrame(renderEverything);

}

Jank-free smooth touch scrolling is critical to engagement!

Chrome tries to scroll on the GPU thread, but event handling on main thread.

If there is a touch handler, scrolling must wait to see if event.preventDefault
is called.

DEMO

Problem 7: Touch handlers can cause scroll jank

JS
function reallyFast(event) {}

document.addEventListener('touchstart', reallyFast);

document.addEventListener('touchmove', reallyFast);

http://borismus.github.io/mobile-web-samples/io13/handler-size/
http://borismus.github.io/mobile-web-samples/io13/handler-size/

Ask yourself: do you really need that touch handler?

By default, touch input generates common DOM events.

click, scroll, contextmenu all fire.

Touch also sets CSS pseudo classes like :active

You don't always need to implement touch-specific event handlers.

Solution: Avoid unnecessary use of touch event handlers

Solution: Keep touch event regions small

Ask yourself: does your touch area need to be so large?

Chrome keeps track of which parts of the page have touch event handlers.

For each part of your page, decide between:
● smooth scrolling OR
● touch event handling

Don't add touch handlers to the document or body!

Future of touch on the web

Reduce the need to use touch events directly
● eg: Touch support for HTML5 drag-and-drop APIs

Give developers more control over browser default behavior
● eg. customizing scrolling behavior so you don't have to reimplement

scrolling yourself in JavaScript

Better cross-browser support
● Working with Microsoft to standardize some of the touch features from IE10

Goals for future directions with touch on the web

http://www.html5rocks.com/en/tutorials/dnd/basics/

Standardizing input model from IE10. Key design points:
● abstraction and extensibility
● touch extends the MouseEvent model
● touch behavior specified declaratively

Discussion: public-pointer-events@w3.org

Microsoft built a prototype for chromium
Beginning experimental support in Blink

Try one of the early pointer events polyfills:
● hand.js - handjs.codeplex.com/
● Polymer PointerEvents - github.com/polymer-project/PointerEvents
● Points.js - https://github.com/Rich-Harris/Points

Pointer events

https://dvcs.w3.org/hg/pointerevents/raw-file/tip/pointerEvents.html
http://blogs.msdn.com/b/ie/archive/2013/02/27/learning-more-about-pointer-events-as-the-w3c-publishes-last-call-working-draft.aspx
https://dvcs.w3.org/hg/pointerevents/raw-file/tip/pointerEvents.html
mailto:public-pointer-events@w3.org
http://html5labs.interopbridges.com/prototypes/pointer-events-for-webkit/pointer-events-for-webkit/info
http://crbug.com/162757
http://handjs.codeplex.com/
https://github.com/polymer-project/PointerEvents
https://github.com/Rich-Harris/Points

Scroll jank impossible - specify desired behavior declaratively:

Some benefits of pointer events

touch-action: none
● touch drag doesn't scroll
● get all events

touch-action: auto
● touch drag scrolls
● still get 'down' event
● on scroll get 'cancel' event

Mouse+Pointer (89 lines, 97% shared)

Code sharing demo
Mouse+Touch (131 lines, 56% shared)

http://jsbin.com/ucixot/3/edit
http://jsbin.com/ucixot/3/edit
http://jsbin.com/ifaquj/2/edit
http://jsbin.com/ifaquj/2/edit

Conclusion

Resources
Come talk to us in the Chrome 'Questions' bar after the talk
Touch Events: www.w3.org/TR/touch-events/
Touch event discussion: public-webevents@w3.org
Pointer Events: www.w3.org/TR/pointerevents/, Learn more
H5R Article: www.html5rocks.com/en/mobile/touchandmouse/
Rick's G+ stream for touch issues and questions: www.rbyers.net/plus
Dump events test page: www.rbyers.net/eventTest.html

Make your site a joy to use with touch!

Tell us about the problems you have and
what we can improve!

http://www.w3.org/TR/touch-events/
mailto:public-webevents@w3.org
http://www.w3.org/TR/pointerevents/
http://docs.webplatform.org/wiki/PointerEvents
http://www.html5rocks.com/en/mobile/touchandmouse/
http://www.rbyers.net/plus
http://www.rbyers.net/eventTest.html

Thank You!
Please submit feedback: http://goo.gl/wuvkR

rbyers@google.com
http://rbyers.net/plus
@RickByers

http://smus.com
google.com/+BorisSmus
@borismus

Demo mouse+touch drag and drop

Solution: Emulate mouse targeting with elementFromPoint

JSelement.addEventListener('touchmove', function(event) {

 ...

 var touch = event.targetTouches[0];

 var over = document.elementFromPoint(touch.clientX, touch.clientY);

 var last = lastover[touch.identifier];

 if (over != last) {

 last.dispatchEvent(makeEvent('my-touchout'), ...);

 over.dispatchEvent(makeEvent('my-touchover'), ...);

 lastover[touch.identifier] = over;

 }

}

http://jsbin.com/ifaquj/2/edit
http://jsbin.com/ifaquj/2/edit

