

V8: The Oz Story

Solving Performance Mysteries

John McCutchan

Find Your Way to Oz

We've got a problem!

Late in development...

... didn't want to delay ...

... called in performance detectives

Why Performance Matters

60 times a second

16 Milliseconds

Performance Matters

Handle Input JavaScript Layout Paint Composite

J A N K
Performance Matters

Performance Matters

V8

JavaScript execution time:

Google apps spend 50-70% of time in V8

Popular sites 20%-40% of time in V8

Performance Matters

Longer Battery Life

Smoother Applications

More Features

Performance Matters

Performance Mysteries

EVIDENCE COLLECTION

SUSPECTS

FORENSICS LAB

Solving Crimes, Performance Crimes.

Evidence Collection

What Kind of Application is Oz?

Real-time interactive 3D game

EVIDENCE COLLECTION

Are the Developers Following Best Practices?

Yes

EVIDENCE COLLECTION

What Kind of Performance Problem are we Seeing?

Frame rate drop, once per second.

Correlated with GC activity

EVIDENCE COLLECTION

Is 10MB/sec of Garbage Expected?

No

EVIDENCE COLLECTION

What Triggers a Garbage Collection?

EVIDENCE COLLECTION

V8 Memory Management

A GC Pause Walkthrough

• Every call to new or implicit memory allocation

o Reserves memory for object
o Cheap until...

• Memory pool exhausted

o Runtime forced to perform a garbage collection
o Can take milliseconds (!)

• Applications must be careful with object allocation patterns

o Every allocation brings you closer to a GC pause

Where is the cost in allocating memory?

• Generational

o Split values between young and old
o Overtime young values promoted to old

How does V8 manage memory?

Young Values Old Values
Long Lived Values

• Young Generation

o Fast allocation
o Fast collection
o Frequent collection

How does V8 manage memory?

Young Values

• Old Generation

o Fast allocation
o Slower collection
o Infrequently collected

How does V8 manage memory?

Old Values

• Parts of collection run concurrently with mutator
o Incremental Marking

• Mark-sweep
o Return memory to system

• Mark-compact
o Move values

• Why is collecting the young generation faster

o Cost of GC is proportional to the number of live objects

How does V8 manage memory?

Young Generation Collection Old Generation Collection

High death rate (~80%)

Young Generation In Action

To Space

From Space
Used during GC

Values allocated from here

Young Generation In Action

Unallocated memory

From Space

Young Generation In Action

A Unallocated memory

From Space

Allocate A

Young Generation In Action

A Unallocated memory

From Space

B

Allocate B

Young Generation In Action

A Unallocated memory

From Space

B C

Allocate C

Unallocated
memory

Young Generation In Action

A D

From Space

B C

Allocate D

Young Generation In Action

A D

From Space

B C E

Not enough room
for E

Unallocated
memory

Young Generation In Action

A D

From Space

B C

Collection Triggered

Page paused

To Space

Unallocated
memory

Young Generation In Action

A DB C

From and To space are swapped

To Space

Unallocated
memory

Young Generation In Action

A DB C

Live Values are found

To Space

Unallocated
memory

Young Generation In Action

A DB C

To Space

Unallocated
memory

Young Generation In Action

A DB C
Live

Values
Copied

From Space

To Space

Young Generation In Action

A C Unallocated memory

Unallocated
memoryA DB C

From Space

To Space

Young Generation In Action

A C Unallocated memory

From Space

To Space

Young Generation In Action

A C Unallocated
memoryE

Allocate E

• Each allocation moves you closer to a collection

o Not always obvious when you are allocating

• Collection pauses your application

o Higher latency
o Dropped frames
o Unhappy users

How does V8 manage memory?

Suspects

What could be causing frequent GC pauses?

SUSPECTS

Calling new

SUSPECT #1

Unallocated
memoryA DB C E

Audit confirmed no calls to new within frame

"That would have been embarrassing" - UNIT9

SUSPECT #1

Code running in un-optimized mode

SUSPECT #2

var a = p * d;
var b = c + 3;
var c = 3.3 * dt;

point.x = a * b * c;

JavaScript

Unoptimized mode

SUSPECT #2

var a = p * d;
var b = c + 3;
var c = 3.3 * dt;

point.x = a * b * c;

JavaScript

Implicit memory allocation

Optimized Mode

SUSPECT #2

var a = p * d;
var b = c + 3;
var c = 3.3 * dt;

point.x = a * b * c;

JavaScript

Implicit memory allocation

V8 recently optimized for this case

Transitions between optimized and unoptimized mode

Unoptimized

Optimized

Hot

Unoptimized
hell

Certain code
constructs

Deoptimization

Too many
deoptimizations

Potential Suspect!

SUSPECT #2

Modifying Object Shape

SUSPECT #3

function Point(x, y) {
 this.x = x;
 this.y = y;
}

var p = new Point(2.3, 4.5);

p.z = 9.9;

JavaScript

Point

x

y

Modifying Object Shape

SUSPECT #3

function Point(x, y) {
 this.x = x;
 this.y = y;
}

var p = new Point(2.3, 4.5);

p.z = 9.9;

JavaScript

Point'

x

y

z

SUSPECT #3

Point class created Code optimized for
Point class

Shape modified
Point' class created

Code expecting a Point
class is deoptimized

Code is optimized to
support both Point and
Point' classes.

Point

x

y

Point'

x

y

z

Audit confirmed no shape changes

SUSPECT #3

Suspect #1: Calling New
Alibi: Not at crime scene

Suspect #2: Unoptimized mode
Alibi: None

Suspect #3: Shape Change
Alibi: Not at crime scene

Suspects

Forensics

• Chrome DevTools

• about:tracing

• V8 tools

Forensics

•
Confirm unoptimized code is running

• Determine why code isn't optimized

Forensics

Forensics - Capturing V8 timeline

$ Chrome --no-sandbox --js-flags="--prof --noprof-lazy --log-timer-events"

Command Line

$ tools/plot-timer-events /path/to/v8.log

Command Line

Forensics - Analyzing V8 timeline

Forensics - Analyzing V8 timeline

Garbage Collection

Script Execution

Code Kind

Forensics - Analyzing V8 timeline

Optimized Unoptimized

Forensics - Analyzing V8 timeline

Forensics - Analyzing V8 timeline

Forensics - Finding hot unoptimized functions

$ Chrome --no-sandbox --js-flags="--prof --noprof-lazy --log-timer-events"

Command Line

$ tools/mac-tick-processor /path/to/v8.log

Command Line

Forensics - Finding hot unoptimized functions

[JavaScript]:

 ticks total nonlib name

 167 61.2% 61.2% LazyCompile: updateSprites source.js:12

 40 14.7% 14.7% LazyCompile: *drawSprites source.js:20

 15 5.5% 5.5% Stub: KeyedLoadElementStub

 13 4.8% 4.8% Stub: BinaryOpStub_MUL_Alloc_Number+Smi

 6 2.2% 2.2% Stub: BinaryOpStub_ADD_OverwriteRight_Number+Number

 4 1.5% 1.5% Stub: KeyedStoreElementStub

 4 1.5% 1.5% KeyedLoadIC: {12}

 2 0.7% 0.7% KeyedStoreIC: {13}

 1 0.4% 0.4% LazyCompile: ~main source.js:30

Command Line

* indicates optimized function

Forensics - Determining why a function is not optimized

[disabled optimization for updateSprites, reason: ForInStatement is not fast case]

Command Line

$ Chrome --no-sandbox --js-flags="--trace-deopt --trace-opt-verbose"

Command Line

Equivalent of Oz problem code:

Forensics

function updateSprites(dt) {
 for (var sprite in sprites) {
 sprite.position.x += sprite.velocity.x * dt; // update position
 // many more lines of arithmetic.
 }
}

JavaScript

Arithmetic has implicit
allocations

Function not optimized because of this loop construct.

Potential Fix

function updateSprite(sprite, dt) {
sprite.position.x += sprite.velocity.x * dt; // update position

 // many more lines of arithmetic.
}

function updateSprites(dt) {
 for (sprite in sprites) {
 updateSprite(sprite, dt);
 }
}

JavaScript

Arithmetic in optimized function.

Unoptimized function now only calls function

Before and After

Epilogue

•

Simple fix
o GC pause problem solved
o Real problem was unoptimized code

• Oz devs understood how to look under the hood
o Identified other functions in "deoptimization hell"

Conclusion

• Timeline plot
o Birds eye view of V8 activity

• Tick processor
o Table of hot functions

• Deoptimization log
o Deep insight into optimization state machine

Conclusion

• Evidence Collection
o Asking the right questions

• Suspects
o Narrowing in on likely cause

• Forensics
o Using tools to prove your case

<Thank You!>

johnmccutchan@google.com

twitter.com/johnmccutchan

google.com/+JohnMcCutchan

Check out Perf Alley and Chrome Office Hours

References

Chrome DevTools:

• https://developers.google.com/chrome-developer-tools/

V8 Tools:

• https://code.google.com/p/v8/

Structural Profiling JS:

• http://www.youtube.com/watch?v=nxXkquTPng8

