

The Secrets of the Drive Realtime API
A deep dive

Brian Cairns, Cheryl Simon
Software Engineers

1. Introducing the Realtime API
2. Secrets of Realtime Collaboration
3. Designing a Good Data Model
4. The Future

Agenda

Introducing the Realtime API
Realtime collaboration and storage for your apps

Realtime collaboration made easy

Google Docs-style instant collaboration

All Javascript, no messy server

Collaborator presence

Conflict resolution

Click by click updates

Your application

Backed by Google Drive

Demo: Realtime Cube

https://realtime-cube.appspot.com/?fileId=0B7bGs45uoq3qNkY2eWp4SE9vUkU&userId=117215755867360249324

Undo/Redo

Server Failover
Document

Management

Push Notifications

Conflict Resolution
Client / Server

Protocol

AuthenticationConsistent Storage
Server Affinity

Data Replication
User Presence

Sharing UI &
Notifications

Document Metadata

User Profiles

Building a realtime collaboration system

AC
Ls

Or we can do it for you

Google Drive
Storage

Realtime Servers

Network communication

Drive Realtime API

Your Application

Realtime Data Model

Realtime Cube's data model

Root: CollaborativeMap

Moves: CollaborativeList

Move: JSON object Move: JSON object Move: JSON object Move: JSON object

Working with the data model
Javascript

initModel = function(model) {

 var moves = model.createList();

 model.getRoot().set('moves', moves);

};

onFileLoaded = function(doc) {

 model_ = doc.getModel();

 model_.getRoot().get('moves').addEventListener(

 gapi.drive.realtime.EventType.VALUES_ADDED, updateDisplay);

};

addMove = function(side, start, direction) {

 var newMove = new cube.Move(side, start, direction);

 model_.getRoot().get('moves').push(newMove);

};

gapi.drive.realtime.load(fileId, onFileLoaded, initModel);gapi.drive.realtime.load(fileId, onFileLoaded, initModel);

initModel = function(model) {

 var moves = model.createList();

 model.getRoot().set('moves', moves);

};

onFileLoaded = function(doc) {

 model_ = doc.getModel();

 model_.getRoot().get('moves').addEventListener(

 gapi.drive.realtime.EventType.VALUES_ADDED, updateDisplay);

};

Apps

CollabQuest

Realtime Cube

MultiMulti
SudokuSudokuSudoku

Secrets of Realtime Collaboration

Our goal

Every change to the data model is a mutation

Delete @ 14: 6 characters

Insert @ 6: "Realtime "

Hello Realtime world

6 characters
beginning at Index 14

Hello world

Index 6

Hello Realtime world

Hello Realtime world

We store the entire mutation history

Insert @ 0: "Hello Realtime"

Take snapshot

Every mutation is stored

Only the snapshot is sent when loading

Delete @ 14: 6 characters

Insert @ 0: "Hello World"

Insert @ 6: "Realtime"

Local mutations are applied immediately

Insert @ 4: "rainy "

Alice

Insert @ 14: " brightly"

The day dawned brightly.

Bob

The day dawned.

The rainy day dawned.

The day dawned.

Challenge: Mutations get out of date

The rainy day d brightlyawned.

The day dawned.

Insert @ 14: " brightly"

Insert @ 4: "rainy "

Alice needs to apply a modified version
of Bob's mutation

The rainy day dawned brightly.

The day dawned.

Insert @ 14: " brightly"

Insert @ 4: "rainy "

Insert @ 20: " brightly"

If she applies the mutations as-is, Alice gets the
wrong result

Example:
Alice's Document

Solution: Transformation
The server transforms Bob's mutation so that it accounts for Alice's mutation

Alice

The day dawned.

Bob

The day dawned.

The rainy day dawned brightly.The rainy day dawned brightly.

Insert @ 20: " brightly" Insert @ 4: "rainy "

Insert @ 4: "rainy " Insert @ 14: " brightly"

Alice BobServer

The rainy day d brightlyawned.

No-op
transformation

No transformation
(no prev mutations)

Challenge: The server can't transform every change
The server might not know about Alice's mutation until after it sends Bob's mutation to Alice

The rainy day dawned brightly. The rainy day dawned brightly.

Insert @ 14: " brightly"Insert @ 4: "rainy "

Transformation Manager

Solution: Transform on the client too!

Insert @ 14: " brightly"

Pending Mutation Queue

Insert @ 4: "rainy " Transformer
Function

The rainy day dawned brightly.

Keep a client-side queue of sent mutations and transform incoming mutations against the queue

Insert @ 20: " brightly"

Transformation Manager

Pending Mutation Queue

Insert @ 4: "rainy "

Solution: Acknowledge sent mutations
When the server acknowledges a mutation, it can be removed from the pending queue

ACK Insert @ 4

Use case: Undo the local user's last change
Keep an undo stack of inverted mutations

Push inverse of the
local mutation

The day dawned.

The day dawned
brightly.

The rainy day
dawned brightly.

Insert @ 4: "rainy "

Insert @ 14: " brightly" Undo Stack

Delete @ 14: 9 characters

Undo Stack

Challenge: Remote changes break undo

The rainy day
dawned brightly.

The rainy day
dawned brightly.

Applying the inverse of a previous mutation can give the wrong result

Apply

Pop inverse
mutation

Delete @ 14: 9 characters

Delete @ 14: 9 characters

Undo Stack

Solution: Store collaborator mutations

The day dawned.

The day dawned
brightly.

The rainy day
dawned brightly.

1. Push inverse of
the local mutation

Delete @ 14: 9 characters

2. Push collaborator
mutation as-is

Insert @ 4: "rainy "

Insert @ 4: "rainy "

Insert @ 14: " brightly"

Undo Stack

Solution: Transform undo mutations

The rainy day
dawned brightly.

The rainy day
dawned brightly.

Transform undo changes against remote mutations using the same transformer as remote changes

Apply

Transformer
Function

Transformer
Function

1. Pop collaborator
mutation

2. Pop inverse of
local mutation

Delete @ 14: 9 characters

Insert @ 4: "rainy " Delete @ 20: 9 characters

Delete @ 14: 9 characters

Designing a Good Data Model
Or at least avoiding designing a broken one

Case study: Event planning system

Unassigned Amir Eric Salina

Invite guests
Time: 6
Unit: hours

Create menus
Time: 2
Unit: days

Buy ingredients
Time: 5
Unit: hours

Design decorations
Time: 3
Unit: days

Find location
Time: 3
Unit: hours

Make music playlist
Time: 12
Unit: hours

Choose theme
Time: 6
Unit: hours

Proposed data model

Users: CollaborativeMap

Amir: CollaborativeList

"Choose theme"
Task

(custom object)

Unassigned: CollaborativeList

"Invite guests"
Task

(custom object)

"Create menus"
Task

(custom object)

Salina: CollaborativeList

"Make playlist"
Task

(custom object)

"Find location"
Task

(custom object)

Unassigned Amir Eric Salina

Invite guests
Time: 6
Unit: hours

Create menus
Time: 2
Unit: days

Buy ingredients
Time: 5
Unit: hours

Design decorations
Time: 3
Unit: days

Find location
Time: 3
Unit: hours

Make music playlist
Time: 12
Unit: hours

Choose theme
Time: 6
Unit: hours

Title:

Description:

Time:

Unit:

Create menus

Design a themed menu that all of our
guests will enjoy.

Use case: Updating multiple properties atomically

Save

20

hours

Problem: Changes can be interleaved

Set: "Unit" "hours"

Set: "Time" "20"

Set: "Unit" "days"

Set: "Time" "1"

Create menus
Time: 20
Unit: days

Amir Salina

Depending on latency, Salina's changes might be applied before, after, or in-between Amir's changes

Solution: Use compound operations

Amir Salina

Set: "Unit" "hours"

Set: "Time" "20"

Set: "Unit" "days"

Set: "Time" "1"

Javascript

Task.prototype.updateProperties =

 function(newUnit, newTime) {

 this.model_.beginCompoundOperation();

 this.unit = newUnit;

 this.time = newTime;

 this.model_.endCompoundOperation();

}

Compound operations group the mutations so that they are processed together

Create menus
Time: 1
Unit: days

Use case: Keep tasks in priority order

Unassigned Amir Eric Salina

Invite guests
Priority: Medium

Create menus
Priority: High

Buy ingredients
Priority: Low

Design decorations
Priority: High

Find location
Priority: Low

Find location
Priority: High

Choose theme
Priority: Low

Problem: Sorted lists don't stay sorted

Insert "Salina" @ 0: "High Priority"

Sorts performed by different users can conflict, resulting in an unsorted list

Unassigned Amir Salina Eric

Medium
Priority

High Priority

Insert "Salina" @ 0: "Medium Priority"

Solution: Unsorted data model, sorted view

Unassigned Amir Salina Eric

Medium
Priority

High Priority

Datamodel

Sort
Unassigned Amir Salina Eric

High Priority

Medium
Priority

View

Use case: Assigning tasks

Unassigned Amir Eric Salina

Invite guests
Time: 6
Unit: hours

Create menus
Time: 2
Unit: days

Buy ingredients
Time: 5
Unit: hours

Design decorations
Time: 3
Unit: days

Find location
Time: 3
Unit: hours

Make music playlist
Time: 12
Unit: hours

Choose theme
Time: 6
Unit: hours

Buy ingredients
Time: 5
Unit: hours

Problem: List element moves aren't atomic

Delete "Unassigned" @ 1: 1

Simultaneous moves can lead to duplicate entries

Insert "Salina", @ 2: "Task 3"
Delete "Unassigned" @ 1: 1

Insert "Eric" @ 2: "Task 3"

Unassigned Amir Eric Salina

Task 3Task 3

Insert "Salina", @ 2: "Task 3"

Incorrect solution: Compound operations
Compound operations affect the order that mutations are applied in, not how they are transformed

Transformer
Function

Delete "Unassigned" @ 1: 1

Insert "Eric", @ 2: "Task 3"

Delete "Unassigned" @ 1: 1

Insert "Salina", @ 2: "Task 3"

Delete "Unassigned" @ 1: 1

Insert "Eric", @ 2: "Task 3"

Null

New data model

Solution: Invert the datamodel design
Reference assignees from tasks instead of tasks from assignees so moves are atomic

Tasks: CollaborativeList

Set "Task 3": "Assignee", "Salina"

Set "Task 3": "Assignee", "Eric"

Unassigned Amir Eric Salina

Task 3

Task
Assignee: Salina

Task
Assignee: Salina

The Future
Things you wish you had now

Export your data model as JSON

Drive API

{
 "appId": "788242802491",
 "data": {
 "id": "root",
 "type": "Map",
 "value": {
 "key1": {
 "id":"gde2rir49hfrrtjw1",
 "type": "List",
 "value": [
 {"json": 1},
 {"json": true},
 {"json": "hello"}
]
 },
 "key2": {
 "id": "gde2e545ahftu1aj4",
 "type": "EditableString",
 "value": "Hello, world!"
 }
 }
 }
}

REST

or use libraries for:

Java, Javascript, .NET,
Ruby, Python, PHP,

Objective C, Dart, Go

Data
Model

JSON

Drive API
Temp
Model

Data
Model

Model
Differ

Model Diff

Insert @ 6: "Realtime "

Delete @ 14: 6 characters

Merge &
Save Changes

Convert JSON back to Realtime Models

{
 "appId": "788242802491",
 "data": {
 "id": "root",
 "type": "Map",
 "value": {
 ...
}

JSON

Data
Model

Android / Java API

Realtime API

Real-time collaboration from any Android or Java application

Cross-platform compatibility
Shared data models with the Javascript API

class CollaborativeString
implements CharSequence,
Appendable

gapi.drive.realtime.CollaborativeString =
new function() { ... }

Java Javascript

Realtime API

Data
Model

● The Realtime API makes collaboration easy!
● We use mutations and transformation to make real-time collaboration

possible.
● Consider how collaboration works when designing your data model.
● Exciting new features like Java/Android support and JSON

import/export are coming soon!

Summary

Now it's your turn!

Realtime API

Thank you!

Google Drive Developers on G+
google-drive-sdk on Stackoverflow
dory: http://goo.gl/dqQum

http://goo.gl/dqQum

