
RAJAT PHULL, NVIDIA SOFTWARE ENGINEER

ROB TODD, NVIDIA SOFTWARE ENGINEER

Cluster Monitoring and
Management Tools

MANAGE GPUS IN THE CLUSTER

Monitoring/Management

Tools

• NVML

• Nvidia-smi

• Health Tools

Administrators,

End users

Middleware Engineers

…

…

NVIDIA MANAGEMENT PRIMER
NVIDIA Management Library

Provides a low-level C API for application developers to monitor, manage, and analyze specific
characteristics of a GPU.

NVIDIA System Management Interface

A command line tool that uses NVML to provide information in a more readable or parse-ready
format

Exposes most of the NVML API at the command line

Health Tools

nvmlDeviceGetTemperature(device, NVML_TEMPERATURE_GPU, &temp);

nvidia-smi --query-gpu=temperature.gpu --format=csv

SOFTWARE RELATIONSHIPS

CUDA

Libraries

Stats, Dmon,
Daemon, Replay

NVSMI

CUDA Runtime NVML Library

NVIDIA Kernel Mode Driver

NVML SDK

Key SW Components

CUDA Toolkit

NV Driver

GPU Deployment
Kit

Validation Suite

NVIDIA Management Features

Clock control and

performance limits

Identification

PCI Information

Mode of operation

query/control

Thermal data
Power

control/query
GPU utilization

Replay/failure

counters

XID Errors

ECC Errors

Topology

Process accounting Events Samples

C
o
n
fi

g
u
ra

ti
o
n

Performance

H
e
a
lth

Logging & Analysis

Violation Counters

MANAGEMENT CAPABILITIES

NVML EXAMPLE WITH C

#include “nvml.h”

int main()

{

 nvmlReturn_t result;

 nvmlPciInfo_t pci;

 nvmlDevice_t device;

 // First initialize NVML library

 result = nvmlInit();

 if (NVML_SUCCESS != result) {

 printf("Failed to initialize NVML: %s\n", nvmlErrorString(result));

 return 1;

 }

 result = nvmlDeviceGetHandleByIndex(0, &device);

 (check for error...)

 result = nvmlDeviceGetPciInfo(device, &pci);

 (check for error...)

 printf("%d. %s [%s]\n", i, name, pci.busId);

 result = nvmlShutdown();

 (check for error...)

}

NVML EXAMPLE WITH PYTHON BINDINGS

Errors are handled by a “raise NVMLError(returncode)”

https://pypi.python.org/pypi/nvidia-ml-py/

import pynvml

pynvml.nvmlInit()

device = nvmlDeviceGetHandleByIndex(0);

pci = pynvml.nvmlDeviceGetPciInfo(device);

print pci.busId

pynvml.nvmlShutdown();

CONFIGURATION
Identification

Device handles: ByIndex, ByUUID, ByPCIBusID, BySerial

Basic info: serial, UUID, brand, name, index

PCI Information

Current and max link/gen, domain/bus/device

 Topology

Get/set CPU affinity (uses sched_affinity calls)

Mode of operation

ECC SETTINGS
Tesla and Quadro GPUs support ECC memory

Correctable errors are logged but not scrubbed

Uncorrectable errors cause error at user and system level

GPU rejects new work after uncorrectable error, until reboot

ECC can be turned off – makes more GPU memory available at cost of error
correction/detection

Configured using NVML or nvidia-smi

nvidia-smi -e 0

Requires reboot to take effect

P2P AND RDMA
Shows traversal expectations and potential bandwidth
bottleneck via NVSMI

Cgroups friendly

 GPUDirect Comm Matrix

 GPU0 GPU1 GPU2 mlx5_0 mlx5_1 CPU Affinity

 GPU0 X PIX SOC PHB SOC 0-9

 GPU1 PIX X SOC PHB SOC 0-9

 GPU2 SOC SOC X SOC PHB 10-19

 mlx5_0 PHB PHB SOC X SOC

 mlx5_1 SOC SOC PHB SOC X

 Legend:

 X = Self

 SOC = Path traverses a socket-level link (e.g. QPI)

 PHB = Path traverses a PCIe host bridge

 PXB = Path traverses multiple PCIe internal switches

 PIX = Path traverses a PCIe internal switch

 CPU Affinity = The cores that are most ideal for NUMA

For NUMA binding

Socket0 Socket1

HEALTH
Both APIs and tools to monitor/manage health of a GPU

ECC error detection

Both SBE and DBE

XID errors

PCIe throughput and errors

Gen/width

Errors

Throughput

Violation counters

Thermal and power violations of maximum thresholds

PERFORMANCE

Driver Persistence

Power and Thermal Management

Clock Management

DRIVER PERSISTENCE
By default, driver unloads when GPU is idle

Driver must re-load when job starts, slowing startup

If ECC is on, memory is cleared between jobs

Persistence keeps driver loaded when GPUs idle:

nvidia-smi –i <device#> –pm 1

Faster job startup time

POWER AND THERMAL DATA

0

1

2

3

4

5

6

run1 run3 run5 run7

 G
F
L
O

P
S

Inconsistent Application
Perf

Clocks lowered as a preventive measure

Power/Thermal

Capping

Power/Thermal Limit

0

50

100

150

Y-Values

P
o
w

e
r/

Te
m

p

G
P
U

 C
lo

c
k
s

Time

POWER AND THERMAL DATA

Temperature

Current Temp : 90 C

GPU Slowdown Temp : 92 C

GPU Shutdown Temp : 97 C

nvidia-smi –q –d temperature

Power Readings

Power Limit : 95 W

Default Power Limit : 100 W

Enforced Power Limit : 95 W

Min Power Limit : 70 W

Max Power Limit : 10 W

nvidia-smi –q –d power nvidia-smi –-power-limit=150

Power limit for GPU

0000:0X:00.0 was set to

150.00W from 95.00W

List

Temperature

Margins

Query Power

Cap Settings
Set Power

Cap

CLOCK MANAGEMENT

List
Supported

Clocks

List
Current
Clocks

Set
Application

clocks

Launch
CUDA

Application

Reset
Application

Clocks

Example Supported Clocks

Memory : 3004 MHz

 Graphics : 875 MHz

 Graphics : 810 MHz

 Graphics : 745 MHz

 Graphics : 666 MHz

Memory : 324 MHz

 Graphics : 324 MHz

Current Clocks

Clocks

 Graphics : 324 MHz

 SM : 324 MHz

 Memory : 324 MHz

Applications Clocks

 Graphics : 745 MHz

 Memory : 3004 MHz

Default Applications Clocks

 Graphics : 745 MHz

 Memory : 3004 MHz

nvidia-smi –q –d supported_clocks

Applications Clocks

 Graphics : 810 MHz

 Memory : 3004 MHz

nvidia-smi –q –d clocks nvidia-smi –ac 3004,810

Applications Clocks

 Graphics : 745 MHz

 Memory : 3004 MHz

nvidia-smi –rac

Clocks

 Graphics : 810 MHz

 SM : 810 MHz

 Memory : 3004 MHz

CLOCK BEHAVIOR (K80)

Fixed Clocks best for consistent perf

Autoboost (boost up) generally best for max perf

MONITORING & ANALYSIS
Events

Samples

Background Monitoring

HIGH FREQUENCY MONITORING

Provide higher quality data for perf limiters, error events and sensors.
Includes xids, power, clocks, utilization and throttle events

HIGH FREQUENCY MONITORING
nvidia-smi stats

Visualize monitored data using 3rd party custom UI

0

500

1000

21:38:53 21:39:10 21:39:27 21:39:45 21:40:02 21:40:19 21:40:36 21:40:54

0

50

0

200

Power

Draw

Power

Capping

Clock

Changes
W

a
tt

s

d
T

M

H
z

procClk , 1395544840748857, 324

memClk , 1395544840748857, 324

pwrDraw , 1395544841083867, 20

pwrDraw , 1395544841251269, 20

gpuUtil , 1395544840912983, 0

violPwr , 1395544841708089, 0

procClk , 1395544841798380, 705

memClk , 1395544841798380, 2600

pwrDraw , 1395544841843620, 133

xid , 1395544841918978, 31

pwrDraw , 1395544841948860, 250

violPwr , 1395544842708054, 345

Clocks Idle

Clocks boost

Power cap

XID error

T
im

e
lin

e

BRIEF FORMAT
Scrolling single-line interface

Metrics/Devices to be displayed can be configured

 nvidia-smi dmon -i <device#>

CUDA APP

Power Limit = 160 W

Slowdown Temp = 90 C

BACKGROUND MONITORING

GPU 0

GPU 1

GPU 2

Background nvsmi

Process

Log Log

Day-1 Day-2

/var/log/nvstats-yyyymmdd

(Log file path can be configured. Compressed file)

Log

• Only one instance allowed

• Must be run as a root

root@:~$nvidia-smi daemon

PLAYBACK/EXTRACT LOGS
Extract/Replay the complete or parts of log file generated by the daemon

Useful to isolate GPU problems happened in the past

 nvidia-smi replay –f <replay file> -b 9:00:00 –e 9:00:05

LOOKING AHEAD

NVIDIA Diagnostic Tool Suite

Cluster Management APIs

NVIDIA DIAGNOSTIC TOOL SUITE

Prologue Epilog Manual

offline debug pre-job sanity post-job analysis

User runnable, user actionable health and diagnostic tool

SW, HW, perf and system integration coverage

Command line, pass/fail, configurable

Admin (interactive) or Resource Manager (scripted)

Goal is to

consolidate key

needs around one

tool

NVIDIA DIAGNOSTIC TOOL SUITE

FB

CUDA

Sanity

PCIe

Driver
Conflicts

SM/CE

Driver

Sanity

Hardware Software

Config

Mode

Extensible diagnostic
tool

Healthmon will be
deprecated

Determine if a system is
ready for a job

Analysis

logs

stdout Data

Collection
NVML Stats

NVIDIA DIAGNOSTIC TOOL SUITE

JSON format

Binary and text logging
options

Metrics vary by plugin

Various existing tools to
parse, analyze and display
data

NVIDIA CLUSTER MANAGEMENT

 ISV/OEM

Management

 Console

Network

NV Node
Engine (lib)

GPU GPU …

Compute Node

ISV/
OEM

NV Node
Engine (lib)

GPU GPU …

Compute Node

ISV/
OEM

Head Node

NVIDIA CLUSTER MANAGEMENT

NV Cluster
Engine

NV Node
Engine

GPU GPU …

Head Node

Compute Node Compute Node

Network

ISV &

OEM

NV Mgmt

Client

ISV/
OEM

NV Node
Engine

GPU GPU …

Compute Node

ISV/
OEM

NVIDIA CLUSTER MANAGEMENT

Stateful

Proactive Monitoring with
Actionable Insights

Comprehensive Health
Diagnostics

Policy Management

Configuration Management

NVIDIA REGISTERED DEVELOPER PROGRAMS
Everything you need to develop with NVIDIA products

Membership is your first step in establishing a working relationship with
NVIDIA Engineering

Exclusive access to pre-releases

Submit bugs and features requests

Stay informed about latest releases and training opportunities

Access to exclusive downloads

Exclusive activities and special offers

Interact with other developers in the NVIDIA Developer Forums

 REGISTER FOR FREE AT: developer.nvidia.com

THANK YOU

S5894 - Hangout: GPU Cluster Management & Monitoring

Thursday, 03/19, 5pm – 6pm, Location: Pod A

http://docs.nvidia.com/deploy/index.html

contact: cudatools@nvidia.com

http://docs.nvidia.com/deploy/index.html

APPENDIX

SUPPORTED PLATFORMS/PRODUCTS
Supported platforms:

Windows (64-bits) / Linux (32-bit and 64-bit)

Supported products:

Full Support

 All Tesla products, starting with the Fermi architecture

 All Quadro products, starting with the Fermi architecture

 All GRID products, starting with the Kepler architecture

 Selected GeForce Titan products

Limited Support

All Geforce products, starting with the Fermi architecture

CURRENT TESLA GPUS

GPUs

Single

Precision

Peak

(SGEMM)

Double

Precision

Peak

(DGEMM)

Memory

Size

Memory

Bandwidth

(ECC off)

PCIe Gen System Solution

K80 5.6 TF 1.8 TF 2 x 12GB 480 GB/s Gen3 Server

K40
4.29 TF

(3.22TF)

1.43 TF

(1.33 TF)

12 GB

288 GB/s

Gen 3

Server + Workstation

K20X
3.95 TF

(2.90 TF)

1.32 TF

(1.22 TF)
6 GB 250 GB/s Gen 2 Server only

K20
3.52 TF

(2.61 TF)

1.17 TF

(1.10 TF)
5 GB 208 GB/s Gen 2 Server + Workstation

K10 4.58 TF 0.19 TF 8 GB 320 GB/s Gen 3 Server only

AUTO BOOST
User-specified settings for automated clocking changes.

Persistence Mode

nvidia-smi --auto-boost-default=0/1

Enabled by default

Tesla K80

GPU PROCESS ACCOUNTING
Provides per-process accounting of GPU
usage using Linux PID

Accessible via NVML or nvidia-smi (in
comma-separated format)

Requires driver be continuously loaded (i.e.
persistence mode)

No RM integration yet, use site scripts i.e.
prologue/epilogue

Enable accounting mode:
$ sudo nvidia-smi –am 1

Human-readable accounting output:
$ nvidia-smi –q –d ACCOUNTING

Output comma-separated fields:
$ nvidia-smi --query-accounted-
apps=gpu_name,gpu_util –
format=csv

Clear current accounting logs:
$ sudo nvidia-smi -caa

MONITORING SYSTEM WITH NVML SUPPORT

Examples: Ganglia, Nagios, Bright
Cluster Manager, Platform HPC

Or write your own plugins using NVML

TURN OFF ECC
ECC can be turned off – makes more GPU memory available at cost of error
correction/detection

Configured using NVML or nvidia-smi

nvidia-smi -e 0

Requires reboot to take effect

