
Coordinating More Than 3 Million CUDA Threads

for Social Network Analysis

Adam McLaughlin

Applications of interest…

• Computational biology

• Social network analysis

• Urban planning

• Epidemiology

• Hardware verification

2 GTC 2015

Applications of interest…

• Computational biology

• Social network analysis

• Urban planning

• Epidemiology

• Hardware verification

• Common denominator:

Graph Analysis

 3 GTC 2015

Challenges in Network Analysis

• Size

– Networks cannot be manually

inspected

• Varying structural properties

– Small-world, scale-free, meshes,

road networks

•Not a one-size fits all problem

• Unpredictable

– Data-dependent memory access

patterns

4 GTC 2015

Betweenness Centrality

• Determine the

importance of a vertex

in a network

– Requires the solution of

the APSP problem

• Applications are

manifold

• Computationally

demanding

– 𝑂 𝑚𝑛 time complexity

5 GTC 2015

Defining Betweenness Centrality

• Formally, the BC score of a vertex is defined

as:

𝐵𝐶 𝑣 =
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠t≠v

• 𝜎𝑠𝑡 is the number of shortest paths from 𝑠 to 𝑡

• 𝜎𝑠𝑡(𝑣) is the number of those paths passing through 𝑣

6

𝜎𝑠𝑡 = 2

𝜎𝑠𝑡(𝑣) = 1

GTC 2015

u

Brandes’s Algorithm

1. Shortest path calculation (downward)

2. Dependency accumulation (upward)

– Dependency:

𝛿𝑠𝑣 =
𝜎𝑠𝑣
𝜎𝑠𝑤
1 + 𝛿𝑠𝑤

𝑤∈𝑠𝑢𝑐𝑐(𝑣)

7

– Redefine BC scores as:

𝐵𝐶 𝑣 = 𝛿𝑠𝑣
𝑠≠v

GTC 2015

Prior GPU Implementations

• Vertex and Edge Parallelism [Jia et al. (2011)]

– Same coarse-grained strategy

– Edge-parallel approach better utilizes the GPU

• GPU-FAN [Shi and Zhang (2011)]

– Reported 11-19% speedup over Jia et al.

• Results were limited in scope

– Devote entire GPU to fine-grained parallelism

• Both use large 𝑂 𝑚 ,𝑂 𝑛2 predecessor arrays

– Our approach: eliminate this array

• Both use 𝑂(𝑛2 +𝑚) graph traversals

– Our approach: trade-off memory bandwidth and excess work

GTC 2015 8

Coarse-grained Parallelization Strategy

9 GTC 2015

Fine-grained Parallelization Strategy

• Edge-parallel downward traversal

10 GTC 2015

𝒅 = 𝟎

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝑑 = 4

• Threads are

assigned to each

edge

– Only a subset is

active

• Balanced amount

of work per thread

Fine-grained Parallelization Strategy

• Edge-parallel downward traversal

11 GTC 2015

𝑑 = 0

𝒅 = 𝟏

𝑑 = 2

𝑑 = 3

𝑑 = 4

• Threads are

assigned to each

edge

– Only a subset is

active

• Balanced amount

of work per thread

Fine-grained Parallelization Strategy

• Edge-parallel downward traversal

12 GTC 2015

𝑑 = 0

𝑑 = 1

𝒅 = 𝟐

𝑑 = 3

𝑑 = 4

• Threads are

assigned to each

edge

– Only a subset is

active

• Balanced amount

of work per thread

Fine-grained Parallelization Strategy

• Edge-parallel downward traversal

13 GTC 2015

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝒅 = 𝟑

𝑑 = 4

• Threads are

assigned to each

edge

– Only a subset is

active

• Balanced amount

of work per thread

Fine-grained Parallelization Strategy

• Edge-parallel downward traversal

14 GTC 2015

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝒅 = 𝟒

• Threads are

assigned to each

edge

– Only a subset is

active

• Balanced amount

of work per thread

Fine-grained Parallelization Strategy

• Work-efficient downward traversal

15 GTC 2015

𝒅 = 𝟎

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝑑 = 4

• Threads are

assigned vertices

in the frontier

– Use an explicit

queue

• Variable number of

edges to traverse

per thread

Fine-grained Parallelization Strategy

• Work-efficient downward traversal

16 GTC 2015

𝑑 = 0

𝒅 = 𝟏

𝑑 = 2

𝑑 = 3

𝑑 = 4

• Threads are

assigned vertices

in the frontier

– Use an explicit

queue

• Variable number of

edges to traverse

per thread

Fine-grained Parallelization Strategy

• Work-efficient downward traversal

17 GTC 2015

𝑑 = 0

𝑑 = 1

𝒅 = 𝟐

𝑑 = 3

𝑑 = 4

• Threads are

assigned vertices

in the frontier

– Use an explicit

queue

• Variable number of

edges to traverse

per thread

Fine-grained Parallelization Strategy

• Work-efficient downward traversal

18 GTC 2015

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝒅 = 𝟑

𝑑 = 4

• Threads are

assigned vertices

in the frontier

– Use an explicit

queue

• Variable number of

edges to traverse

per thread

Fine-grained Parallelization Strategy

• Work-efficient downward traversal

19 GTC 2015

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝒅 = 𝟒

• Threads are

assigned vertices

in the frontier

– Use an explicit

queue

• Variable number of

edges to traverse

per thread

Motivation for Hybrid Methods

• No one method of parallelization works best

GTC 2015 20

• High diameter: Only do useful work

• Low diameter: Leverage memory bandwidth

Sampling Approach

• Idea: Processing one source vertex takes

𝑂(𝑚 + 𝑛) time

– Can process a small sample of vertices fast!

• Estimate the diameter of the graph’s

connected components

– Store the maximum BFS distance found from

each of the first 𝑘 vertices

– 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ≈ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)

• Completes useful work rather than

preprocessing the graph!
GTC 2015 21

Experimental Setup

• Single-node

– CPU (4 Cores)

• Intel Core i7-2600K

•3.4 GHz, 8MB Cache

– GPU

•NVIDIA GeForce GTX

Titan

•14 SMs, 837 MHz, 6

GB GDDR5

•Compute Capability 3.5

22 GTC 2015

• Multi-node (KIDS)

– CPUs (2 x 4 Cores)

• Intel Xeon X5560

•2.8 GHz, 8 MB Cache

– GPUs (3)

•NVIDIA Tesla M2090

•16 SMs, 1.3 GHz, 6 GB

GDDR5

•Compute Capability 2.0

– Infiniband QDR Network

 • All times are reported in seconds

Benchmark Data Sets

Name Vertices Edges Diam. Significance

af_shell9 504,855 8,542,010 497 Sheet Metal Forming

caidaRouterLevel 192,244 609,066 25 Internet Router Level

cnr-2000 325,527 2,738,969 33 Web crawl

com-amazon 334,863 925,872 46 Product co-purchasing

delaunay_n20 1,048,576 3,145,686 444 Random Triangulation

kron_g500-logn20 524,288 21,780,787 6 Kronecker Graph

loc-gowalla 196,591 1,900,654 15 Geosocial

luxembourg.osm 114,599 119,666 1,336 Road Network

rgg_n_2_20 1,048,576 6,891,620 864 Random Geometric

smallworld 100,000 499,998 9 Logarithmic Diameter

23 GTC 2015

Scaling Results (rgg)

GTC 2015 24

• Random geometric

graphs

• Sampling beats GPU-

FAN by 12x for all

scales

Scaling Results (rgg)

GTC 2015 25

• Random geometric

graphs

• Sampling beats GPU-

FAN by 12x for all

scales

• Similar amount of

time to process a

graph 4x as large!

Scaling Results (Delaunay)

GTC 2015 26

• Sparse meshes

• Speedup grows with

graph scale

Scaling Results (Delaunay)

GTC 2015 27

• Sparse meshes

• Speedup grows with

graph scale

• When edge-parallel is

best it’s best by a

matter of ms

Scaling Results (Delaunay)

GTC 2015 28

• Sparse meshes

• Speedup grows with

graph scale

• When edge-parallel is

best it’s best by a

matter of ms

• When sampling is

best it’s by a matter

of days

Benchmark Results

GTC 2015 29

• Road networks and

meshes see ~10x

improvement

– af_shell: 2.5 days → 5

hours

• Modest improvements

otherwise

• 2.71x Average

speedup

Multi-GPU Results

GTC 2015 30

• Linear speedups when

graphs are sufficiently

large

• 10+ GTEPS for 192

GPUs

• Scaling isn’t unique to

graph structure

– Abundant coarse-

grained parallelism

A Back of the Envelope Calculation…

GTC 2015 31

• 192 Tesla M2090 GPUs

• 16 Streaming Multiprocessors per GPU

• Maximum of 1024 Threads per Block

• 192 ∗ 16 ∗ 1024 = 3,145,728

• Over 3 million CUDA Threads!

Conclusions

• Work-efficient approach obtains up to 13x

speedup for high-diameter graphs

• Tradeoff between work-efficiency and DRAM

utilization maximizes performance

– Average speedup is 2.71x for all graphs

• Our algorithms easily scale to many GPUs

– Linear scaling on up to 192 GPUs

• Our results are consistent across network

structures

32 GTC 2015

Questions?

33 GTC 2015

• Contact: Adam McLaughlin,

Adam27X@gatech.edu

• Advisor: David A. Bader,

bader@cc.gatech.edu

• Source code:

https://github.com/Adam27X/hybrid_BC

https://github.com/Adam27X/graph-utils

mailto:Adam27X@gatech.edu
mailto:bader@cc.gatech.edu
https://github.com/Adam27X/hybrid_BC
https://github.com/Adam27X/hybrid_BC
https://github.com/Adam27X/graph-utils
https://github.com/Adam27X/graph-utils
https://github.com/Adam27X/graph-utils

Backup

34 GTC 2015

Contributions

• A work-efficient algorithm for computing Betweenness

Centrality on the GPU

– Works especially well for high-diameter graphs

• On-line hybrid approaches that coordinate threads

based on graph structure

• An average speedup of 2.71x over the best existing

methods

• A distributed implementation that scales linearly to up

to 192 GPUs

• Results that are performance portable across the

gamut of network structures

35 GTC 2015

Brandes’s Algorithm

• Let vertex 1 be the source, 𝑠

36 GTC 2015

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝑑 = 4

• First, downward

traversal from 𝑠

• Obtain the

number of

shortest paths

from 𝑠 to each

vertex (𝜎𝑠𝑠 = 1)

Brandes’s Algorithm

• Downward traversal from 𝑠

37 GTC 2015

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝑑 = 4

• 𝜎17 = 𝜎15 + 𝜎16

• 𝜎1⋅ =
[1,1,1,1,1,1,2,2,2]

𝜎𝑠𝑤 = 𝜎𝑠𝑣
𝑣∈𝑝𝑟𝑒𝑑(𝑤)

Brandes’s Algorithm

• Upward dependency accumulation toward 𝑠

38 GTC 2015

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝑑 = 4

• 𝛿16 =
𝜎16

𝜎17
1 + 𝛿17 +

𝜎16

𝜎18
1 + 𝛿18

• 𝛿1⋅ =

[8,0,0,5,
3

2
,
3

2
, 1,0,0]

𝛿𝑠𝑣 =
𝜎𝑠𝑣
𝜎𝑠𝑤
1 + 𝛿𝑠𝑤

𝑤∈𝑠𝑢𝑐𝑐(𝑣)

Fine-grained Parallelization Strategy

• Vertex-parallel downward traversal

39 GTC 2015

𝒅 = 𝟎

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝑑 = 4

• Threads are

assigned to each

vertex

– Only a subset is

active

• Variable number of

edges to traverse

per thread

Fine-grained Parallelization Strategy

• Vertex-parallel downward traversal

40 GTC 2015

𝑑 = 0

𝒅 = 𝟏

𝑑 = 2

𝑑 = 3

𝑑 = 4

• Threads are

assigned to each

vertex

– Only a subset is

active

• Variable number of

edges to traverse

per thread

Fine-grained Parallelization Strategy

• Vertex-parallel downward traversal

41 GTC 2015

𝑑 = 0

𝑑 = 1

𝒅 = 𝟐

𝑑 = 3

𝑑 = 4

• Threads are

assigned to each

vertex

– Only a subset is

active

• Variable number of

edges to traverse

per thread

Fine-grained Parallelization Strategy

• Vertex-parallel downward traversal

42 GTC 2015

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝒅 = 𝟑

𝑑 = 4

• Threads are

assigned to each

vertex

– Only a subset is

active

• Variable number of

edges to traverse

per thread

Fine-grained Parallelization Strategy

• Vertex-parallel downward traversal

43 GTC 2015

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝒅 = 𝟒

• Threads are

assigned to each

vertex

– Only a subset is

active

• Variable number of

edges to traverse

per thread

