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Applications of interest...

Computational biology
Social network analysis
Urban planning
Epidemiology
Hardware verification
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Applications of interest...

Computational biology
Social network analysis
Urban planning
Epidemiology
Hardware verification

Common denominator:
Graph Analysis
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Challenges in Network Analysis
e Size
— Networks cannot be manually
Inspected
e Varying structural properties

- Small-world, scale-free, meshes,
road networks

* Not a one-size fits all problem
 Unpredictable

- Data-dependent memory access
patterns
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- Requires the solution of
the APSP problem

* Applications are
- 0(mn) time complexity

Importance of a vertex
In @ network

demanding

Betweenness Centrality
manifold

* Determine the
 Computationally
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Defining Betweenness Centraiitil
 Formally, the BC score of a vertex is defined

as.
BC(v) = 2 o5t (V)

o
setev  oF
e g, IS the number of shortest paths from sto ¢

e g,+(V) is the number of those paths passing through v

Ogt = 2
os¢(v) = 1
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Brandes’s Algorithm

1. Shortest path calculation (downward)

2. Dependency accumulation (upward)
— Dependency:

0]
Ospy = Z O_SU (1 + Ssw)
SwW
wesucc(v)

- Redefine BC scores as:

BC(v) = Z 5.,

SFV
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Prior GPU Implementations

* Vertex and Edge Parallelism [Jia et al. (2011)]
- Same coarse-grained strategy
- Edge-parallel approach better utilizes the GPU

* GPU-FAN [Shi and Zhang (2011)]

- Reported 11-19% speedup over Jia et al.
* Results were limited in scope

— Devote entire GPU to fine-grained parallelism
e Both use large {0(m), 0(n?)} predecessor arrays
— QOur approach: eliminate this array

 Both use 0(n* + m) graph traversals
— Our approach: trade-off memory bandwidth and excess work
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Coarse-grained Parallellzatlon Strategy

@

®

O

®

Input graph

Source vertices to be processed

R

N

CUDA Grid

S Mo

BC[1] + BC[1] +7
BC[2] « BC[2]+2

BC[9] o BCl9| -4
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Calculate local changes to BC scores

l

:

l

BC[1] « BC[1] +5
BC[2] « BC[2] - 3

BC[9] « BC[9] +1

BC[1] + BC[1]
BO[2] « BO[2] +7

BC[8] « BC[g] — 4

BC[1] « BC[1] +2
BC[2] « BC[2] - 2

BC[9] o BC[9] —1
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Fine-grained Parallelization Stra‘tegy

 Edge-parallel downward traversal

* Threads are
assigned to each
edge

- Only a subset is
active

e Balanced amount
of work per thread
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Fine-grained Parallelization Stra‘tegy

 Edge-parallel downward traversal

e Threads are

d=20
assigned to each
i=1 § edge
P - Only a subset is
active
d=3 * Balanced amount
. of work per thread
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Fine-grained Parallelization Stra‘tegy

 Edge-parallel downward traversal

* Threads are
assigned to each
edge

- Only a subset is
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Fine-grained Parallelization Stra‘tegy

e Work-efficient downward traversal

* Threads are
assigned vertices
in the frontier

- Use an explicit
queue

e Variable number of
edges to traverse
per thread
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delaunay_n20 Vertex Frontier

02 % 0.4 % 0.6 % 0.8 %

0%

Motivation for Hybrid Methods

e No one method of parallelization works best

rgg_n_2_20 Vertex Frontier
0% 005% 01% 015% 0.2% 0.25%

kron_g500-logn20 Vertex Frontier

0% 10% 20% 30% 40% 50 % 60%

g
-
N
w
H

T T T T T T T T T
0 100 200 300 400 0 200 400 600

Iteration Number Iteration Number Iteration Number
(a) delaunay_n20 (b) rgg_n_2_20 (c) kron_g500-logn20

e High diameter: Only do useful work
* Low diameter: Leverage memory bandwidth

Georgia Caollege of
GTC 2015 Tech Compuiing

20




Sampling Approach

* |[dea: Processing one source vertex takes
O(m + n) time
— Can process a small sample of vertices fast!

e Estimate the diameter of the graph’s
connected components

- Store the maximum BFS distance found from
each of the first k vertices

- diameter = median(distances)

e Completes useful work rather than
preprocessing the graph!
Georgia GCaollege of
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Experimental Setup
e Single-node  Multi-node (KIDS)
- CPU (4 Cores) - CPUs (2 x 4 Cores)
* Intel Core i7-2600K * Intel Xeon X5560
e 3.4 GHz, 8MB Cache e 2.8 GHz, 8 MB Cache
- GPU - GPUs (3)
* NVIDIA GeForce GTX * NVIDIA Tesla M2090
Titan * 16 SMs, 1.3 GHz, 6 GB
e 14 SMs, 837 MHz, 6 GDDRb
GB GDDR5 « Compute Capability 2.0
» Compute Capability 3.5 _ |nfiniband QDR Network

e All times are reported in seconds

Georgia GCaollege of
GTC 2015 Tech || Compuiiing 22



Benchmark Data Sets

af_shell9 504,855 8,542,010 497 Sheet Metal Forming
caidaRouterLevel 192,244 609,066 25 Internet Router Level
cnr-2000 325,527 2,738,969 33 Web crawl
com-amazon 334,863 925,872 46 Product co-purchasing

delaunay n20 1,048,576 3,145,686 444 Random Triangulation

kron_g500-logn20 524,288 21,780,787 6 Kronecker Graph
loc-gowalla 196,591 1,900,654 15 Geosocial
luxembourg.osm 114,599 119,666 1,336 Road Network

rgg_ n_ 2 20 1,048,576 6,891,620 864 Random Geometric
smallworld 100,000 499,998 9 Logarithmic Diameter
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Scaling Results (rgg)

e Rand

om geometric

graphs

e Sam

nling beats GPU-

FAN

scales

oy 12x for all
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Scaling Results (rgg)

e Random geometric
graphs

e Sampling beats GPU-
FAN by 12x for all

scales

e Similar amount of
time to process a
graph 4x as large!
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Scaling Results (Delaunay)

e Sparse meshes

e Speedup grows with
graph scale

GTC 2015
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Scaling Results (Delaunay) 4

e Sparse meshes

* Speedup grows with |
graph scale

—8— Edge-parallel (Jia et al.)
—o— Sampling
- - GPU-FAN Extrapolated
* When edge-parallel is
best it's best by a
matter of ms
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Scaling Results (Delaunay)

e Sparse meshes

e Speedup grows with
graph scale

* When edge-parallel is
best it's best by a
matter of ms

* When sampling is
best it's by a matter
of days

GTC 2015

—e— GPU-FAN
" —8— Edge-parallel (Jia et al.)
—o— Sampling

- - GPU-FAN Extrapolated
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Benchmark Results

e Road networks and

meshes see ~10x Y | E—————
improvement
- af _shell: 25 days > 5 ©
hours ]
» Modest improvements : _ I (T
otherwise " IH[I NN
« 2.71x Average gl A1 AT TEE AR AR VR AR

af_shell caida cnr amazon del20 gowalla luxem  small

speedup
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Multi-GPU Results

e Linear speedups when
graphs are sufficiently
large

e 10+ GTEPS for 192
GPUs

e Scaling isn’t unique to
graph structure

- Abundant coarse-
grained parallelism

GTC 2015

Speedup over 1 Node

o Scale 10
o Scale 12
& Scale 14
A Scale 16
v Scale 18
+ Scale 20

Number of Nodes
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A Back of the Envelope Calculation...

e 192 Tesla M2090 GPUs J
e 16 Streaming Multiprocessors per GPU
e Maximum of 1024 Threads per Block

e 192 %16 1024 = 3,145,728
e Over 3 million CUDA Threads!
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Conclusions

* Work-efficient approach obtains up to 13x
speedup for high-diameter graphs

* Tradeoff between work-efficiency and DRAM
utilization maximizes performance
— Average speedup is 2.71x for all graphs

e Qur algorithms easily scale to many GPUs
- Linear scaling on up to 192 GPUs

e Qur results are consistent across network
structures

Georgia Cadllege off
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Questions?

e Contact: Adam McLaughlin,
Adam2 7/ X@gatech.edu

* Advisor: David A. Bader,
bader@cc.gatech.edu

e Source code:
https://github.com/Adam?27X/hybrid BC
https://github.com/Adam?27X/graph-utils

>
NVIDIA.

Georgia Coadllege of
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»
Contributions

* A work-efficient algorithm for computing Betweenness
Centrality on the GPU

— Works especially well for high-diameter graphs

* On-line hybrid approaches that coordinate threads
based on graph structure

* An average speedup of 2.71x over the best existing
methods

e A distributed implementation that scales linearly to up
to 192 GPUs

* Results that are performance portable across the
gamut of network structures

Georgia Coaollege off
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Brandes’s Algorithm

e et vertex 1 be the source, s

e First, downward
traversal from s

e Obtain the
number of
shortest paths
from s to each
vertex (o, = 1)

Georgia GCaollege of
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Brandes’s Algorithm

e Downward traversal from s

vepred(w)

® 017 = 015 T 046

® 0. =
11,1,1,1,1,1,2,2,2]
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Brandes’s Algorithm

 Upward dependency accumulation toward s

0]
Oy = Z = (1+ 5SW)

0]
wesucc(v) SW

° §16 —
=2 (1+67)+

517
— (1 + 615)
018
¢ §;. =
[8,0,0,5,5,>,1,0,0]
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Fine-grained Parallelization Strategy
* Vertex-parallel downward traversal

d—0 * Threads are
assigned to each

d=1 (@ (@) 4 vertex

P ; @ — Onlyasubset IS

active

d=3 7 /(e) * Variable number of

y S edges to traverse
per thread
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Fine-grained Parallelization Stra‘tegy

* Vertex-parallel downward traversal

* Threads are
assigned to each
vertex

- Only a subset is
active

e Variable number of
edges to traverse
per thread
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Fine-grained Parallelization Stra‘tegy

* Vertex-parallel downward traversal
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Fine-grained Parallelization Stra‘tegy
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