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• Computational biology 

• Social network analysis 

• Urban planning 
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Graph Analysis 
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Challenges in Network Analysis 

• Size 

– Networks cannot be manually 

inspected 

• Varying structural properties 

– Small-world, scale-free, meshes, 

road networks 

•Not a one-size fits all problem 

• Unpredictable 

– Data-dependent memory access 

patterns 
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Betweenness Centrality 

• Determine the 

importance of a vertex 

in a network 

– Requires the solution of 

the APSP problem 

• Applications are 

manifold 

• Computationally 

demanding 

– 𝑂 𝑚𝑛  time complexity 
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Defining Betweenness Centrality 

• Formally, the BC score of a vertex is defined 

as: 

𝐵𝐶 𝑣 =  
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠t≠v

 

• 𝜎𝑠𝑡 is the number of shortest paths from 𝑠 to 𝑡 

• 𝜎𝑠𝑡(𝑣) is the number of those paths passing through 𝑣 
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𝜎𝑠𝑡 = 2 

𝜎𝑠𝑡(𝑣) = 1 

GTC 2015 

u 



Brandes’s Algorithm 

1. Shortest path calculation (downward) 

2. Dependency accumulation (upward) 

– Dependency: 

𝛿𝑠𝑣 =  
𝜎𝑠𝑣
𝜎𝑠𝑤
1 + 𝛿𝑠𝑤

𝑤∈𝑠𝑢𝑐𝑐(𝑣)
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– Redefine BC scores as: 

𝐵𝐶 𝑣 = 𝛿𝑠𝑣
𝑠≠v
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Prior GPU Implementations 

• Vertex and Edge Parallelism [Jia et al. (2011)] 

– Same coarse-grained strategy 

– Edge-parallel approach better utilizes the GPU 

• GPU-FAN [Shi and Zhang (2011)] 

– Reported 11-19% speedup over Jia et al. 

• Results were limited in scope 

– Devote entire GPU to fine-grained parallelism 

• Both use large 𝑂 𝑚 ,𝑂 𝑛2  predecessor arrays 

– Our approach: eliminate this array 

• Both use 𝑂(𝑛2 +𝑚) graph traversals 

– Our approach: trade-off memory bandwidth and excess work 
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Coarse-grained Parallelization Strategy 
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Fine-grained Parallelization Strategy 

• Edge-parallel downward traversal 
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Fine-grained Parallelization Strategy 
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Motivation for Hybrid Methods 

• No one method of parallelization works best 
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• High diameter: Only do useful work 

• Low diameter: Leverage memory bandwidth 



Sampling Approach 

• Idea: Processing one source vertex takes 

𝑂(𝑚 + 𝑛) time  

– Can process a small sample of vertices fast! 

• Estimate the diameter of the graph’s 

connected components 

– Store the maximum BFS distance found from 

each of the first 𝑘 vertices  

– 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ≈ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠) 

• Completes useful work rather than 

preprocessing the graph! 
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Experimental Setup 

• Single-node 

– CPU (4 Cores) 

• Intel Core i7-2600K 

•3.4 GHz, 8MB Cache 

– GPU 

•NVIDIA GeForce GTX 

Titan 

•14 SMs, 837 MHz, 6 

GB GDDR5 

•Compute Capability 3.5 
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• Multi-node (KIDS) 

– CPUs (2 x 4 Cores)  

• Intel Xeon X5560 

•2.8 GHz, 8 MB Cache 

– GPUs (3) 

•NVIDIA Tesla M2090 

•16 SMs, 1.3 GHz, 6 GB 

GDDR5 

•Compute Capability 2.0 

– Infiniband QDR Network 

 • All times are reported in seconds 



Benchmark Data Sets 

Name Vertices Edges Diam. Significance 

af_shell9 504,855 8,542,010 497 Sheet Metal Forming 

caidaRouterLevel 192,244 609,066 25 Internet Router Level  

cnr-2000 325,527 2,738,969 33 Web crawl 

com-amazon 334,863 925,872 46 Product co-purchasing 

delaunay_n20 1,048,576 3,145,686 444 Random Triangulation 

kron_g500-logn20 524,288 21,780,787 6 Kronecker Graph 

loc-gowalla 196,591 1,900,654 15 Geosocial 

luxembourg.osm 114,599 119,666 1,336 Road Network 

rgg_n_2_20 1,048,576 6,891,620 864 Random Geometric 

smallworld 100,000 499,998 9 Logarithmic Diameter 
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Scaling Results (rgg) 
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• Sparse meshes 

• Speedup grows with 

graph scale 

• When edge-parallel is 

best it’s best by a 

matter of ms 

• When sampling is 

best it’s by a matter 

of days 



Benchmark Results 
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• Road networks and 

meshes see ~10x 

improvement 

– af_shell: 2.5 days → 5 

hours 

• Modest improvements 

otherwise 

• 2.71x Average 

speedup 

 



Multi-GPU Results 
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• Linear speedups when 

graphs are sufficiently 

large 

• 10+ GTEPS for 192 

GPUs 

• Scaling isn’t unique to 

graph structure 

– Abundant coarse-

grained parallelism 

 



A Back of the Envelope Calculation…  
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• 192 Tesla M2090 GPUs 

• 16 Streaming Multiprocessors per GPU 

• Maximum of 1024 Threads per Block 

 

• 192 ∗ 16 ∗ 1024 = 3,145,728 

• Over 3 million CUDA Threads! 

 

 



Conclusions 

• Work-efficient approach obtains up to 13x 

speedup for high-diameter graphs 

• Tradeoff between work-efficiency and DRAM 

utilization maximizes performance 

– Average speedup is 2.71x for all graphs 

• Our algorithms easily scale to many GPUs 

– Linear scaling on up to 192 GPUs 

• Our results are consistent across network 

structures 
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Questions? 
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• Contact: Adam McLaughlin, 

Adam27X@gatech.edu  

• Advisor: David A. Bader, 

bader@cc.gatech.edu 

• Source code: 

https://github.com/Adam27X/hybrid_BC 

https://github.com/Adam27X/graph-utils 

mailto:Adam27X@gatech.edu
mailto:bader@cc.gatech.edu
https://github.com/Adam27X/hybrid_BC
https://github.com/Adam27X/hybrid_BC
https://github.com/Adam27X/graph-utils
https://github.com/Adam27X/graph-utils
https://github.com/Adam27X/graph-utils


Backup 
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Contributions 

• A work-efficient algorithm for computing Betweenness 

Centrality on the GPU 

– Works especially well for high-diameter graphs 

• On-line hybrid approaches that coordinate threads 

based on graph structure 

• An average speedup of 2.71x over the best existing 

methods 

• A distributed implementation that scales linearly to up 

to 192 GPUs 

• Results that are performance portable across the 

gamut of network structures 
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Brandes’s Algorithm 

• Let vertex 1 be the source, 𝑠 
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𝑑 = 0 

𝑑 = 1 

𝑑 = 2 

𝑑 = 3 

𝑑 = 4 

• First, downward 

traversal from 𝑠 

• Obtain the 

number of 

shortest paths 

from 𝑠 to each 

vertex (𝜎𝑠𝑠 = 1) 



Brandes’s Algorithm 

• Downward traversal from 𝑠 
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𝑑 = 0 

𝑑 = 1 

𝑑 = 2 

𝑑 = 3 

𝑑 = 4 

• 𝜎17 = 𝜎15 + 𝜎16 

• 𝜎1⋅ =
[1,1,1,1,1,1,2,2,2] 

𝜎𝑠𝑤 =  𝜎𝑠𝑣
𝑣∈𝑝𝑟𝑒𝑑(𝑤)

 



Brandes’s Algorithm 

• Upward dependency accumulation toward 𝑠 
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𝑑 = 0 

𝑑 = 1 

𝑑 = 2 

𝑑 = 3 

𝑑 = 4 

• 𝛿16 =
𝜎16

𝜎17
1 + 𝛿17 +

𝜎16

𝜎18
1 + 𝛿18  

• 𝛿1⋅ =

[8,0,0,5,
3

2
,
3

2
, 1,0,0] 

𝛿𝑠𝑣 =  
𝜎𝑠𝑣
𝜎𝑠𝑤
1 + 𝛿𝑠𝑤

𝑤∈𝑠𝑢𝑐𝑐(𝑣)
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