

Coordinating More Than 3 Million CUDA Threads for Social Network Analysis

Adam McLaughlin

Georgia Tech College of Computing **Computational Science and Engineering**

Applications of interest...

- Computational biology
- Social network analysis
- Urban planning
- Epidemiology
- Hardware verification

College of

Computing

Georgia

Applications of interest...

- Computational biology
- Social network analysis
- Urban planning
- Epidemiology
- Hardware verification
- Common denominator: Graph Analysis

College of Computing

Georgia

Challenges in Network Analysis

• Size

- Networks cannot be manually inspected
- Varying structural properties
 - Small-world, scale-free, meshes, road networks
 - Not a one-size fits all problem
- Unpredictable
 - Data-dependent memory access patterns

്രം പ്രത്വാം തി

Computing

Geordia

Betweenness Centrality

- Determine the importance of a vertex in a network
 - Requires the solution of the APSP problem
- Applications are manifold
- Computationally demanding
 - O(mn) time complexity

(College of

Computing

Georgia

Defining Betweenness Centrality

 Formally, the BC score of a vertex is defined as:

$$BC(v) = \sum_{s \neq t \neq v} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

- σ_{st} is the number of shortest paths from s to t
- $\sigma_{st}(v)$ is the number of those paths passing through v

- 1. Shortest path calculation (downward)
- 2. Dependency accumulation (upward)
 - Dependency:

$$\delta_{sv} = \sum_{w \in succ(v)} \frac{\sigma_{sv}}{\sigma_{sw}} (1 + \delta_{sw})$$

- Redefine BC scores as:

$$BC(v) = \sum_{s \neq v} \delta_{sv}$$

Georgia

Tech

(റ്റം) (ഒറും റ്റ്

Prior GPU Implementations

- Vertex and Edge Parallelism [Jia et al. (2011)]
 - Same coarse-grained strategy
 - Edge-parallel approach better utilizes the GPU
- GPU-FAN [Shi and Zhang (2011)]
 - Reported 11-19% speedup over Jia et al.
 - Results were limited in scope
 - Devote entire GPU to fine-grained parallelism
- Both use large $\{O(m), O(n^2)\}$ predecessor arrays
 - Our approach: eliminate this array
- Both use $O(n^2 + m)$ graph traversals
 - Our approach: trade-off memory bandwidth and excess work

Coarse-grained Parallelization Strategy

Edge-parallel downward traversal

- Threads are assigned to each edge
 - Only a subset is active
- Balanced amount of work per thread

(College of

Computing

Georgia

Edge-parallel downward traversal

- Threads are assigned to each edge
 - Only a subset is active
- Balanced amount of work per thread

(College of

Computing

Georgia

Edge-parallel downward traversal

- Threads are assigned to each edge
 - Only a subset is active
- Balanced amount of work per thread

(College of

Computing

Georgia

Edge-parallel downward traversal

- Threads are assigned to each edge
 - Only a subset is active
- Balanced amount of work per thread

(College of

Computing

Georgia

Edge-parallel downward traversal

- Threads are assigned to each edge
 - Only a subset is active
- Balanced amount of work per thread

(College of

Computing

Georgia

Work-efficient downward traversal

- Threads are assigned vertices in the frontier
 - Use an explicit queue
- Variable number of edges to traverse per thread

College of

Computing

Georgia

Work-efficient downward traversal

- Threads are assigned vertices *in the frontier*
 - Use an explicit queue
- Variable number of edges to traverse per thread

College of

Computing

Work-efficient downward traversal

- Threads are assigned vertices in the frontier
 - Use an explicit queue
- Variable number of edges to traverse per thread

College of

Computing

Georgia

Work-efficient downward traversal

- Threads are assigned vertices in the frontier
 - Use an explicit queue
- Variable number of edges to traverse per thread

College of

Computing

Georgia

Work-efficient downward traversal

- Threads are assigned vertices in the frontier
 - Use an explicit queue
- Variable number of edges to traverse per thread

College of

Computing

Motivation for Hybrid Methods

No one method of parallelization works best

- High diameter: Only do useful work
- Low diameter: Leverage memory bandwidth

20

College of

Sampling Approach

- Idea: Processing one source vertex takes O(m + n) time
 - Can process a small sample of vertices fast!
- Estimate the diameter of the graph's connected components
 - Store the maximum BFS distance found from each of the first k vertices
 - diameter \approx median(distances)
- Completes useful work rather than preprocessing the graph!

dia

Experimental Setup

- Single-node
 - CPU (4 Cores)
 - Intel Core i7-2600K
 - 3.4 GHz, 8MB Cache
 - GPU
 - NVIDIA GeForce GTX Titan
 - 14 SMs, 837 MHz, 6 GB GDDR5
 - Compute Capability 3.5

- Multi-node (KIDS)
 - CPUs (2 x 4 Cores)
 - Intel Xeon X5560
 - 2.8 GHz, 8 MB Cache
 - GPUs (3)
 - NVIDIA Tesla M2090
 - 16 SMs, 1.3 GHz, 6 GB GDDR5
 - Compute Capability 2.0
 - Infiniband QDR Network
- All times are reported in seconds

Benchmark Data Sets

Name	Vertices	Edges	Diam.	Significance
af_shell9	504,855	8,542,010	497	Sheet Metal Forming
caidaRouterLevel	192,244	609,066	25	Internet Router Level
cnr-2000	325,527	2,738,969	33	Web crawl
com-amazon	334,863	925,872	46	Product co-purchasing
delaunay_n20	1,048,576	3,145,686	444	Random Triangulation
kron_g500-logn20	524,288	21,780,787	6	Kronecker Graph
loc-gowalla	196,591	1,900,654	15	Geosocial
luxembourg.osm	114,599	119,666	1,336	Road Network
rgg_n_2_20	1,048,576	6,891,620	864	Random Geometric
smallworld	100,000	499,998	9	Logarithmic Diameter
GTC 2015			Ge	College of Computing 23

Scaling Results (rgg)

- Random geometric graphs
- Sampling beats GPU-FAN by 12x for all scales

Tech

Scaling Results (rgg)

- Random geometric graphs
- Sampling beats GPU-FAN by 12x for all scales
- Similar amount of time to process a graph 4x as large!

Georgia

Tech

College of

Scaling Results (Delaunay)

- Sparse meshes
- Speedup grows with graph scale

Georgia

Tech

College of

Scaling Results (Delaunay)

- Sparse meshes
- Speedup grows with graph scale
- When edge-parallel is best it's best by a matter of ms

Georgia

Tech

College of

Scaling Results (Delaunay)

- Sparse meshes
- Speedup grows with graph scale
- When edge-parallel is best it's best by a matter of *m*s
- When sampling is best it's by a matter of *day*s

Georgia Tech College of

Benchmark Results

- Road networks and meshes see ~10x improvement
 - af_shell: 2.5 days → 5
 hours
- Modest improvements otherwise
- 2.71x Average speedup

College of

Computing

Multi-GPU Results

- Linear speedups when graphs are sufficiently large
- 10+ GTEPS for 192 GPUs
- Scaling isn't unique to graph structure
 - Abundant coarsegrained parallelism

Georgia

Tech

College of

A Back of the Envelope Calculation...

• 192 Tesla M2090 GPUs

- 16 Streaming Multiprocessors per GPU
- Maximum of 1024 Threads per Block

- 192 * 16 * 1024 = 3,145,728
- Over 3 million CUDA Threads!

(റ്റം) ക്രത്തം തി

Computing

Conclusions

- Work-efficient approach obtains up to 13x
 speedup for high-diameter graphs
- Tradeoff between work-efficiency and DRAM utilization maximizes performance
 - Average speedup is 2.71x for all graphs
- Our algorithms easily scale to many GPUs

 Linear scaling on up to 192 GPUs
- Our results are consistent across network structures

Questions?

- Contact: Adam McLaughlin, <u>Adam27X@gatech.edu</u>
- Advisor: David A. Bader, <u>bader@cc.gatech.edu</u>

• Source code:

https://github.com/Adam27X/hybrid_BC https://github.com/Adam27X/graph-utils

College of

Computing

Georgia

Tech

33

Backup

	Georgia College of
GTC 2015	Tech Computing 34

Contributions

- A **work-efficient algorithm** for computing Betweenness Centrality on the GPU
 - Works especially well for high-diameter graphs
- On-line **hybrid approaches** that coordinate threads based on graph structure
- An average speedup of 2.71x over the best existing methods
- A distributed implementation that scales linearly to up to 192 GPUs

dia

Computing

 Results that are performance portable across the gamut of network structures

• Let vertex 1 be the source, s

- First, downward traversal from *s*
- Obtain the number of shortest paths from s to each vertex ($\sigma_{ss} = 1$)

Georgia Tech College of

Upward dependency accumulation toward s

Vertex-parallel downward traversal

- Threads are assigned to each vertex
 - Only a subset is active
- Variable number of edges to traverse per thread

College of

Computing

Vertex-parallel downward traversal

- Threads are assigned to each vertex
 - Only a subset is active
- Variable number of edges to traverse per thread

College of

Computing

Vertex-parallel downward traversal

- Threads are assigned to each vertex
 - Only a subset is active
- Variable number of edges to traverse per thread

College of

Computing

Vertex-parallel downward traversal

- Threads are assigned to each vertex
 - Only a subset is active
- Variable number of edges to traverse per thread

College of

Computing

Vertex-parallel downward traversal

- Threads are assigned to each vertex
 - Only a subset is active
- Variable number of edges to traverse per thread

College of

Computing