
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos, Manycore Device
Performance Portability
for C++ HPC Applications

H. Carter Edwards and Christian Trott
Sandia National Laboratories

GPU TECHNOLOGY CONFERENCE 2015
MARCH 16-20, 2015 | SAN JOSE, CALIFORNIA

SAND2015-1885C (Unlimited Release)

What is “Kokkos” ?
 κόκκος (Greek)
 Translation: “granule” or “grain” or “speck”
 Like grains of salt or sand on a beach

 Programming Model Abstractions
 Identify / encapsulate grains of data and parallelizable operations
 Aggregate these grains with data structure and parallel patterns
 Map aggregated grains onto memory and cores / threads

 An Implementation of the Kokkos Programming Model
 Sandia National Laboratories’ open source C++ library

1

Outline
 Core Abstractions and Capabilities

 Performance portability challenge: memory access patterns
 Layered C++ libraries
 Spaces, policies, and patterns
 Polymorphic multidimensional array
 Easy parallel patterns with C++11 lambda
 Managing memory access patterns
 Atomic operations
 Wrap up

 Portable Hierarchical Parallelism

 Initial Scalable Graph Algorithms

 Conclusion

2

3

Performance Portability Challenge:
Best (decent) performance requires computations to
implement architecture-specific memory access patterns
 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)
 Array alignment for cache-lines and vector units
 Hyperthreads’ cooperative use of L1 cache

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment
 Temporal locality and special hardware (texture cache)

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma
 i.e., architecture specific data structure layout and access

This has been the wrong concern
The right concern: Abstractions for Performance Portability?

4

Kokkos’ Performance Portability Answer
Integrated mapping of thread parallel computations and
multidimensional array data onto manycore architecture

1. Map user’s parallel computations to threads
 Parallel pattern: foreach, reduce, scan, task-dag, ...
 Parallel loop/task body: C++11 lambda or C++98 functor

2. Map user’s datum to memory
 Multidimensional array of datum, with a twist
 Layout : multi-index (i,j,k,...) ↔ memory location
 Kokkos chooses layout for architecture-specific memory access pattern
 Polymorphic multidimensional array

3. Access user datum through special hardware (bonus)
 GPU texture cache to speed up read-only random access patterns
 Atomic operations for thread safety

Application & Library Domain Layer(s)

5

Layered Collection of C++ Libraries
 Standard C++, Not a language extension

 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...

 Uses C++ template meta-programming
 Previously relied upon C++1998 standard
 Now require C++2011 for lambda functionality

Supported by Cuda 7.0; full functionality in Cuda 7.5
 Participating in ISO/C++ standard committee for core capabilities

Back-ends: Cuda, OpenMP, pthreads, specialized libraries ...

Trilinos Sparse Linear Algebra
Kokkos Containers & Algorithms

Kokkos Core

6

Abstractions: Spaces, Policies, and Patterns
 Memory Space : where data resides
 Differentiated by performance; e.g., size, latency, bandwidth

 Execution Space : where functions execute
 Encapsulates hardware resources; e.g., cores, GPU, vector units, ...
 Denote accessible memory spaces

 Execution Policy : how (and where) a user function is executed
 E.g., data parallel range : concurrently call function(i) for i = [0..N)
 User’s function is a C++ functor or C++11 lambda

 Pattern: parallel_for, parallel_reduce, parallel_scan, task-dag, ...

 Compose: pattern + execution policy + user function; e.g.,
parallel_pattern(Policy<Space>, Function);
 Execute Function in Space according to pattern and Policy

 Extensible spaces, policies, and patterns

7

Examples of Execution and Memory Spaces

Compute Node

Multicore
Socket DDR

Attached Accelerator

GPU
GDDR

GPU::capacity
(via pinned)

primary

primary

GPU::perform
(via UVM)

Compute Node

Multicore
Socket DDR

primary
shared

deep_copy

Attached Accelerator

GPU
GDDR primary

perform shared

8

Polymorphic Multidimensional Array View
 View< double**[3][8] , Space > a(“a”,N,M);
 Allocate array data in memory Space with dimensions [N][M][3][8]
? C++17 improvement to allow View<double[][][3][8],Space>

 a(i,j,k,l) : User’s access to array datum
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory
 Optional array bounds checking of indices for debugging

 View Semantics: View<double**[3][8],Space> b = a ;
 A shallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data
 Analogous to C++11 std::shared_ptr

 deep_copy(destination_view , source_view);
 Copy data from ‘source_view’ to ‘destination_view’
Kokkos policy: never hide an expensive deep copy operation

9

Polymorphic Multidimensional Array Layout
 Layout mapping : a(i,j,k,l) → memory location
 Layout is polymorphic, defined at compile time
 Kokkos chooses default array layout appropriate for “Space”
 E.g., row-major, column-major, Morton ordering, dimension padding, ...

 User can specify Layout : View< ArrayType, Layout, Space >
 Override Kokkos’ default choice for layout
 Why? For compatibility with legacy code, algorithmic performance tuning, ...

 Example Tiling Layout
 View<double**,Tile<8,8>,Space> m(“matrix”,N,N);
 Tiling layout transparent to user code : m(i,j) unchanged
 Layout-aware algorithm extracts tile subview

10

Multidimensional Array Subview & Attributes
 Array subview of array view (new)
 Y = subview(X , ...ranges_and_indices_argument_list...);
 View of same data, with the appropriate layout and index map
 Each index argument eliminates a dimension
 Each range [begin,end) argument contracts a dimension

 Access intent Attributes
View< ArrayType, Layout, Space, Attributes >

 How user intends to access datum
 Example, View with const and random access intension

 View< double ** , Cuda > a(“mymatrix”, N, N);
 View< const double **, Cuda, RandomAccess > b = a ;
Kokkos implements b(i,j) with GPU texture cache

11

Multidimensional Array functionality being
considered by ISO/C++ standard committee
 TBD: add layout polymorphism – a critical capability
 To be discussed at May 2015 ISO/C++ meeting

 TBD: add explicit (compile-time) dimensions
 Minor change to core language to allow: T[][][3][8]
 Concern: performance loss when restricted to implicit (runtime) dimensions

 TBD: use simple / intuitive array access API: x(i,j,k,l)
 Currently considering : x[{ i , j , k , l }]
 Concern: performance loss due to intermediate initializer list

 TBD: add shared pointer (std::shared_ptr) semantics
 Currently merely a wrapper on user-managed memory
 Concern: coordinating management of view and memory lifetime

12

Easy Parallel Patterns with C++11 and Defaults
parallel_pattern(Policy<Space> , UserFunction)

 Easy example BLAS-1 AXPY with views
parallel_for(N , KOKKOS_LAMBDA(int i){ y(i) = a * x(i) + y(i); });
 Default execution space chosen for Kokkos installation
 Execution policy “N” => RangePolicy<DefaultSpace>(0,N)
 #define KOKKOS_LAMBDA [=] /* non-Cuda */
 #define KOKKOS_LAMBDA [=]__device__ /* Cuda 7.5 candidate feature */

 Tell NVIDIA Cuda development team you like and want this in Cuda 7.5 !

 More verbose without lambda and defaults:
struct axpy_functor {
 View<double*,Space> x , y ; double a ;
 KOKKOS_INLINE_FUNCTION
 void operator()(int i) const { y(i) = a * x(i) + y(i); }
 // ... constructor ...
};
parallel_for(RangePolicy<Space>(0,N) , axpy_functor(a,x,y));

13

Kokkos Manages Challenging Part of
Patterns’ Implementation
 Example: DOT product reduction

parallel_reduce(N , KOKKOS_LAMBDA(int i , double & value)
 { value += x(i) * y(i); }
 , result);
 Challenges: temporary memory and inter-thread reduction operations
 Cuda shared memory for inter-warp reductions
 Cuda global memory for inter-block reductions
 Intra-warp, inter-warp, and inter-block reduction operations

 User may define reduction type and operations
struct my_reduction_functor {
 typedef ... value_type ;
 KOKKOS_INLINE_FUNCTION void join(value_type&, const value_type&) const ;
 KOKKOS_INLINE_FUNCTION void init(value_type&) const ;
};
 ‘value_type’ can be runtime-sized one-dimensional array
 ‘join’ and ‘init’ plugged into inter-thread reduction algorithm

14

Managing Memory Access Pattern:
Compose Parallel Execution ○ Array Layout

 Map Parallel Execution
 Maps calls to function(iw) onto threads
 GPU: iw = threadIdx + blockDim * blockIds
 CPU: iw ∈[begin,end)Th ; contiguous partitions among threads

 Choose Multidimensional Array Layout
 Leading dimension is parallel work dimension

 Leading multi-index is ‘iw’ : a(iw , j, k, l)
 Choose appropriate array layout for space’s architecture

 E.g., AoS for CPU and SoA for GPU

 Fine-tune Array Layout
 E.g., padding dimensions for cache line alignment

Performance Impact of Access Pattern

15

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

16

Atomic operations
atomic_exchange, atomic_compare_exchange_strong,
atomic_fetch_add, atomic_fetch_or, atomic_fetch_and

 Thread-scalability of non-trivial algorithms and data structures
 Essential for lock-free implementations
 Concurrent summations to shared variables
 E.g., finite element computations summing to shared nodes

 Updating shared dynamic data structure
 E.g., append to a shared array or insert into a shared map

 Portably map to compiler/hardware specific capabilities
 GNU and CUDA extensions when available
 Current: any 32bit or 64bit type, may use CAS-loop implementation

 ISO/C++ 2011 and 2014 atomics not adequate for HPC
 Proposed necessary improvements for C++17

Thread-Scalable Fill of Sparse Linear System

17

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

18

Core Abstractions and Capabilities (wrap up)
 Abstractions
 Identify / encapsulate grains of data and parallelizable operations
 Aggregate these grains with data structure and parallel patterns
 Map aggregated grains onto memory and cores / threads

 Grains and Patterns
 Parallelizable operation: C++11 lambda or C++98 functor
 Parallel pattern: foreach, reduce, scan, task-dag, ...
 Multidimensional array of datum
 Atomic operations

 Extensible Mappings
 Polymorphic multidimensional array : space, layout, access intentions
 Execution policy : where and how to execute

 Next Step : Finer Grain Parallelism with Hierarchical Patterns
 κόκκος : “like grains of sand on a beach” – how fine can we go?

Outline
 Core Abstractions and Capabilities

 Portable Hierarchical Parallelism
 Two-level thread-team execution policy and nested parallel patterns
 Thread-team shared memory
 Three-level execution policy
 Application to molecular dynamics kernels
 Application to tensor mathematics kernels

 Initial Scalable Graph Algorithms (very new)

 Conclusion

19

20

Thread Team Execution Policy
 Expose and map more parallelism
 Vocabulary
 OpenMP: League of Teams of Threads
 Cuda: Grid of Blocks of Threads

 Thread Team Functionality
 Threads within a team execute concurrently
 Teams do not execute concurrently
Nested parallel patterns: foreach, reduce, scan
 Team-shared scratch memory

 Thread Team Portability : map onto hardware
 Cuda : team == thread block, possibly a sub-block group of warps
 Xeon Phi : team == hyperthreads sharing L1 cache
 CPU : team == thread

parallel_for

parallel_reduce

21

Thread Team Example:
Sparse Matrix-Vector Multiplication

 Traditional serial compressed row storage (CRS) algorithm:
for (int i = 0 ; i < nrow ; ++i)
 for (int j = irow(i) ; j < irow(i+1) ; ++j)
 y(i) += A(j) * x(jcol(j));

 Thread team algorithm, using C++11 lambda
typedef TeamPolicy<Space> policy ;
parallel_for(policy(nrow /* #leagues */),
 KOKKOS_LAMBDA(policy::member_type const & member) {
 double result = 0 ;
 const int i = member.league_rank();
 parallel_reduce(TeamThreadRange(member,irow(i),irow(i+1)),
 [&](int j , double & val) { val += A(j) * x(jcol(j));},
 result);
 if (member.team_rank() == 0) y(i) = result ;
 }
);

22

Thread Team Shared Scratch Memory
 Challenges
 Multiple arrays residing in shared scratch memory
 Arrays may have runtime dimensions
 Arrays’ dimensions possibly dependent upon team size

 Approach: reuse Kokkos abstractions
 Shared scratch Memory Space of the Execution Space
 Manage array with a View defined on this space
 Thread team executing in the execution space is given an instance of the

associated shared scratch memory space

 Capability available via user defined functor
 Typically need richer information than C++11 lambda can provide
 ... example ...

23

Team Shared Scratch Memory Example
struct my_functor {
 typedef TeamPolicy<ExecutionSpace> Policy ;
 typedef ExecutionSpace::scratch_memory_space Scratch ;
 typedef View<double**,Scratch,MemoryUnmanaged> SharedView ;
 SharedView x , y ;
 int nx , ny ;

 KOKKOS_INLINE_FUNCTION
 void operator()(Policy::member_type const & member) const
 {
 Scratch shmem_space = member.team_shmem();
 x(shmem_space, member.team_size(), nx);
 y(shmem_space, member.team_size(), ny);
 // ... team fill of arrays ...
 member.team_barrier();
 // ... team computations on arrays ...
 member.team_barrier();
 }
 // Query shared memory size before parallel dispatch:
 size_t team_shmem_size(int team_size) const {
 return SharedView::shmem_size(team_size , nx) +
 SharedView::shmem_size(team_size , ny);
 }
};

24

Thread Team Execution Policy, 3rd Level
 Add third level of Vector parallelism
 Map algorithm’s thread teams onto hardware resources
 Cuda : “thread” == warp, “vector lane” == thread of warp
 Xeon Phi : “thread” == hyperthread, “vector lane” == SSE or AVX lane

 Vector parallelism functionality
 Vector lanes execute lock-step concurrently
 Consistent parallel patterns at vector level: foreach, reduce, scan
 New “single” pattern denoting only one vector lane performs operation

 Portably covering all levels used in sophisticated Cuda kernels

 C++11 lambda necessary for usability
 Vector parallel lambdas nested within team parallel lambdas
 Fortunately Cuda 6.5 supports C++ lambda within device kernels!

25

Application to Molecular Dynamics Kernel

parFor i in natoms {
 n = 0
 bin_idx = bin_of(i);
 for bin in stencil(bin_idx) {
 for j in bin_atom_ids(bin) {
 if(distance(i,j) < cut)
 neighbor(i,n++) = j;
 }
 }
}

parForTeam base_bins in bins {
 copy_to_shared(base_bins,shared_base_bins)
 for bin_row in YZ_part_of(base_bins) {
 copy_to_shared(bin_row,shared_bin_row)
 parForTeam i in bin_atom_ids(shared_base_bins) {
 parForVector i in bin_atom_ids(shared_base_bins) {
 for j in bin_atom_ids(shared_bin_row) {
 if(distance(i,j) < cut) neighbor(i,n++) = j;
 }
 }
 }
 }
}

Atom Neighbor List Construction
 - atom ids stored in a Cartesian grid (XYZ) locality-bin data structure
 - atoms sorted by locality -> Non-Team algorithm has good cache efficiency
 - using teams and shared memory to improve cache efficiency on GPU
 - a team works on a set of neighboring bins, 1 bin per thread in the team

Non-Team Algorithm Team Algorithm

 Previously a Cuda-specialized implementation
 Now a portable implementation

0

10

20

30

40

50

60

70

K80 SandyBridge Power8

Ti
m

e
pe

r s
te

p

NonTeam
Team

26

Performance of a Complete Simulation Step
 Timing data for isolated kernel not available
 Comparing compute nodes of roughly equivalent power

- 1/2 of K80 (i.e. one of the two GPUs on the board)
- 2 Sockets of 8 Core Sandy Bridge with 2 wide SMT
- 2 Sockets of 10 Core Power 8 chips with 8 wide SMT

 CPUs using Team-Size 1
 GPUs using Team-Size 2x32

27

Application to Tensor Math Library Kernels
 Performed through Harvey Mudd College clinic program
 Advisor/Professor: Jeff Amelang
 Undergraduate team: Brett Collins, Alex Gruver, Ellen Hui, Tyler Marklyn

 Project: re-engineer serial kernels to use Kokkos
 Initially using “flat” range policy
 Progressing to thread team policy for appropriate kernels
 Several candidate kernels for team parallelism, results for:
 Multi-matrix multiply : ∀ 𝑐,𝑑, 𝑒 :𝑉 𝑐,𝑑, 𝑒 = ∑ 𝐴 𝑐,𝑝,𝑑 ∗ 𝐵𝑝 𝑐,𝑝, 𝑒

 Thread team
 Outer (league level) parallel_for over dimension ‘c’
 Inner (team level) parallel_reduce over summation dimensions p
 Inner (team level) parallel_for over tensor dimensions d, e

28

Application to Tensor Math Library Kernels
 Performance of “multi-matrix multiply” tensor contraction
 ∀ 𝑐,𝑑, 𝑒 :𝑉 𝑐,𝑑, 𝑒 = ∑ 𝐴 𝑐,𝑝,𝑑 ∗ 𝐵𝑝 𝑐,𝑝, 𝑒
 d = e = 6, symmetric tensor
 p = 27 point numerical integration of a hexahedral cell
 c = # cells

More parallelism
available to map

Team-synchronization
overhead with nested
parallelism

Outline
 Core Abstractions and Capabilities

 Portable Hierarchical Parallel Execution Policies

 Initial Scalable Graph Algorithms
 Construction of sparse matrix graph from finite element mesh
 Breadth first search of highly variable degree graph

 Conclusion

29

Thread-Scalable Construction of
Sparse Matrix Graph from Finite Element Mesh
 Given Finite Element Mesh Connectivity
 { element → { nodes } }
 View<int*[8],Space> element_node ;

 Generate node→node graph
 Compressed sparse row data structure
 𝒏𝒏𝒏𝒏, 𝒄𝒄𝒄𝒄𝒄𝒄 𝒋 :  ∀ 𝒋 ∈ 𝒊𝒊𝒊𝒊 𝒏𝒏𝒏𝒏 … 𝒊𝒊𝒊𝒊 𝒏𝒏𝒏𝒏 + 𝟏 ,  ∀ 𝒏𝒏𝒏𝒏
 node = node index, irow = offset array, column(j) = connected node index

 Challenges
 Determine unique node-node entries given redundant entries
 { element → { nodes } } have shared faces and edges

 Unknown number of node-node entries
 Upper bound N2 is too large to allocate

30

Thread-Scalable Construction of
Sparse Matrix Graph from Finite Element Mesh

1. Parallel-for : fill Kokkos lock-free unordered map with node-node pairs
 { element → { nodes } } : foreach element, foreach pair of nodes
 Successful insert → atomic increment node’s column counts

2. Parallel-scan : sparse matrix rows’ column counts generates row offsets
 Last entry is total count of unique node-node pairs

3. Allocate sparse matrix column-index array
4. Parallel-for : query unordered map to fill sparse matrix column-index array
 foreach entry in unordered map of node-node pairs

5. Parallel-for : sort rows’ column-index subarray

31

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

Breadth First Search of Graph
with Highly Varied Degree Vertices
 Porting portions of MTGL to GPU via Kokkos
 MTGL: Sandia’s multithreaded graph library
 Internal laboratory directed research & development (LDRD) project
 Sandia collaborators: Jonathan Berry and Greg Mackey

 Evaluate suitability of Kokkos and GPU for graph algorithms
 MTGL previously threaded for CPU via Qthreads
 Ease and performance of layering MTGL on Kokkos ?
 Performance of MTGL algorithms on GPU ?

32

MTGL: Multithreaded Graph Library

Back-ends: Cuda, OpenMP, pthreads, Qthreads, ...

Kokkos Containers & Algorithms
Kokkos Core

Breadth First Search of Graph
with Vertices of Highly Varying Degree
 Iterative frontier-advancing algorithm (conceptually simple)
 Given a frontier set of vertices
 Foreach edge associated with each vertex in the frontier

if edge’s other vertex has not been visited, add to next frontier

 Challenges for thread-scalability
 Maximizing parallelism in “foreach edge of each frontier vertex”
 Removing load imbalance in “foreach edge of each frontier vertex”
 Set of edges will not fit in GPU memory (set of vertices will fit)
 Concurrent growth of global frontier set

 Strategy for thread-scalability
 Manhattan loop collapse* of “foreach edge of each frontier vertex”
 Thread-Team coordinated growth of global frontier set

* technique used in Cray and LLVM compilers

33

Breadth First Search Algorithm
 Graph implemented via compressed sparse row (CSR) scheme
 𝒗, 𝒆𝒆𝒆𝒆 𝒋 :  ∀ 𝒋 ∈ 𝒊𝒊𝒊𝒊 𝒗 … 𝒊𝒊𝒊𝒊 𝒗 + 𝟏 ,  ∀ 𝒗
 v = vertex index, irow = offset array, edge(j) = subarray of paired vertices

 Given search result array of vertices : search(*)
 [0..a) = vertex indices accumulated from previous search iteration
 [a..b) = vertex indices of current search frontier

1. Generate frontier vertex degree offset array ‘fscan’
 Frontier sub-array of vertex indices is search([a..b))
 parallel_scan of vertex degrees (irow[v+1] – irow[v]) to generate fscan

2. Evaluate search frontier’s edges, #edges = fscan(b) – fscan(a)
 parallel_for via TeamPolicy, each team searches range of edges
 Each thread evaluates vertices of collection of edges
 Atomic update to determine if first visit, append thread-local buffer
 Intra-team parallel_scan of local buffers to count team’s search result
 Append team’s search to global search array, only one atomic update

3. Repeat for updated frontier

34

Breadth First Search Algorithm
 Maximizing parallelism
 Manhattan loop collapse facilitates parallelizing over edges, not vertices
 Removes load imbalance concerns for highly variable degree vertices

 Minimizing synchronization
 Thread local buffer for accumulating search result
 Intra-team parallel scan of thread local buffer sizes for team result size
 Team’s single atomic update of global search array

 Place arrays in appropriate memory spaces via Kokkos::View
 Vertex arrays in GPU memory: irow(*), search(*), fscan(*)
 Edge array in Host-Pinned memory: edge(*)

 Performance evaluation of portable implementation
 Scalability for graphs with highly variable degree vertices
 CPU vs. GPU
 Edge array in GPU vs. Host-Pinned

 35

Breadth First Search Performance Testing
 Sequence of generated test graphs
 Doubling #vertices and #edges
 Edges eventually cannot fit in GPU memory
 Similar vertex degree histograms for all generated graphs

 Start algorithm’s iteration on vertex of largest degree

36

Breadth First Search Performance Testing
 Good scalability on Kepler
 Teams stream through edge array with coalesced access pattern
 Almost 2x performance drop reading edge array from Host Pinned memory
 Enables processing of large graphs where edges cannot fit in GPU memory

37

Summary : Concepts and Abstractions
 κόκκος : “like grains of sand on a beach”
 Identify / encapsulate grains of data and parallelizable operations
 Aggregate these grains with data structure and parallel patterns
 Map aggregated grains onto memory and cores / threads

 Mapping
 User functions, execution spaces, parallel patterns, execution polices
 Polymorphic multidimensional array, memory spaces, layout, access intent
 Atomic operations

 Hierarchical Parallel Patterns
 Maximizing opportunity (grains) for parallelism

38

Conclusion
 Kokkos enables performance portability
 parallel_pattern(ExecutionPolicy<ExecutionSpace> , UserFunction)
 Polymorphic multidimensional arrays solves the array-of-structs versus

struct-of-arrays dilemma
 Atomic operations
Engaging with ISO/C++ Standard to advocate for these capabilities

 Pure library approach using C++ template meta-programming
 Significantly simplified when UserFunction is a C++11 lambda
 Cuda 7.5 candidate feature for device lambda : [=]__device__
 Tell NVIDIA you like and want this!

 Thread team execution policy for hierarchical parallelism
 Portable abstraction for Cuda grids, blocks, warps, and shared memory

 Early R&D for application to graph algorithms

39

	Kokkos, Manycore Device�Performance Portability�for C++ HPC Applications
	What is “Kokkos” ?
	Outline
	Performance Portability Challenge:�Best (decent) performance requires computations to implement architecture-specific memory access patterns
	Kokkos’ Performance Portability Answer
	Layered Collection of C++ Libraries
	Abstractions: Spaces, Policies, and Patterns
	Examples of Execution and Memory Spaces
	Polymorphic Multidimensional Array View
	Polymorphic Multidimensional Array Layout
	Multidimensional Array Subview & Attributes
	Multidimensional Array functionality being considered by ISO/C++ standard committee
	Easy Parallel Patterns with C++11 and Defaults
	Kokkos Manages Challenging Part of Patterns’ Implementation
	Managing Memory Access Pattern:�Compose Parallel Execution ○ Array Layout
	Performance Impact of Access Pattern
	Atomic operations
	Thread-Scalable Fill of Sparse Linear System
	Core Abstractions and Capabilities (wrap up)
	Outline
	Thread Team Execution Policy
	Thread Team Example:�Sparse Matrix-Vector Multiplication
	Thread Team Shared Scratch Memory
	Team Shared Scratch Memory Example
	Thread Team Execution Policy, 3rd Level
	Application to Molecular Dynamics Kernel
	Slide Number 27
	Application to Tensor Math Library Kernels
	Application to Tensor Math Library Kernels
	Outline
	Thread-Scalable Construction of �Sparse Matrix Graph from Finite Element Mesh
	Thread-Scalable Construction of �Sparse Matrix Graph from Finite Element Mesh
	Breadth First Search of Graph�with Highly Varied Degree Vertices
	Breadth First Search of Graph�with Vertices of Highly Varying Degree
	Breadth First Search Algorithm
	Breadth First Search Algorithm
	Breadth First Search Performance Testing
	Breadth First Search Performance Testing
	Summary : Concepts and Abstractions
	Conclusion

