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What is “Kokkos” ? 
 κόκκος (Greek) 
 Translation: “granule” or “grain” or “speck” 
 Like grains of salt or sand on a beach 

 Programming Model Abstractions 
 Identify / encapsulate grains of data and parallelizable operations  
 Aggregate these grains with data structure and parallel patterns  
 Map aggregated grains onto memory and cores / threads 

 An Implementation of the Kokkos Programming Model 
 Sandia National Laboratories’ open source C++ library 
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Outline 
 Core Abstractions and Capabilities 

 Performance portability challenge: memory access patterns 
 Layered C++ libraries 
 Spaces, policies, and patterns 
 Polymorphic multidimensional array 
 Easy parallel patterns with C++11 lambda 
 Managing memory access patterns 
 Atomic operations 
 Wrap up 

 Portable Hierarchical Parallelism 

 Initial Scalable Graph Algorithms 

 Conclusion 
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Performance Portability Challenge: 
Best (decent) performance requires computations to 
implement architecture-specific memory access patterns 
 CPUs (and Xeon Phi) 
 Core-data affinity: consistent NUMA access (first touch) 
 Array alignment for cache-lines and vector units 
 Hyperthreads’ cooperative use of L1 cache 

 GPUs 
 Thread-data affinity: coalesced access with cache-line alignment 
 Temporal locality and special hardware (texture cache) 

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma 
 i.e., architecture specific data structure layout and access 

This has been the wrong concern 
The right concern: Abstractions for Performance Portability? 
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Kokkos’ Performance Portability Answer 
Integrated mapping of thread parallel computations and 
multidimensional array data onto manycore architecture 

1. Map user’s parallel computations to threads 
 Parallel pattern: foreach, reduce, scan, task-dag, ... 
 Parallel loop/task body: C++11 lambda or C++98 functor 

2. Map user’s datum to memory 
 Multidimensional array of datum, with a twist 
 Layout : multi-index (i,j,k,...) ↔ memory location 
 Kokkos chooses layout for architecture-specific memory access pattern 
 Polymorphic multidimensional array 

3. Access user datum through special hardware (bonus) 
 GPU texture cache to speed up read-only random access patterns 
 Atomic operations for thread safety 

 
 
 



Application & Library Domain Layer(s) 
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Layered Collection of C++ Libraries 
 Standard C++, Not a language extension 

 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA 
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ... 

 Uses C++ template meta-programming 
 Previously relied upon C++1998 standard 
 Now require C++2011 for lambda functionality 

Supported by Cuda 7.0; full functionality in Cuda 7.5 
 Participating in ISO/C++ standard committee for core capabilities 

 

Back-ends: Cuda, OpenMP, pthreads, specialized libraries ... 

Trilinos Sparse Linear Algebra 
Kokkos Containers & Algorithms 

Kokkos Core 
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Abstractions: Spaces, Policies, and Patterns 
 Memory Space : where data resides 
 Differentiated by performance; e.g., size, latency, bandwidth 

 Execution Space : where functions execute 
 Encapsulates hardware resources; e.g., cores, GPU, vector units, ... 
 Denote accessible memory spaces 

 Execution Policy : how (and where) a user function is executed 
 E.g., data parallel range : concurrently call function(i) for i = [0..N) 
 User’s function is a C++ functor or C++11 lambda 

 Pattern: parallel_for, parallel_reduce, parallel_scan, task-dag, ... 

 Compose: pattern + execution policy + user function; e.g., 
parallel_pattern( Policy<Space>, Function); 
 Execute Function in Space according to pattern and Policy 

 Extensible spaces, policies, and patterns 
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Examples of Execution and Memory Spaces 

Compute Node 

Multicore 
Socket DDR 

Attached Accelerator 

GPU 
GDDR 

GPU::capacity 
(via pinned) 

primary 

primary 

GPU::perform 
(via UVM) 

Compute Node 

Multicore 
Socket DDR 

primary 
shared 

deep_copy 

Attached Accelerator 

GPU 
GDDR primary 

perform shared 



8 

Polymorphic Multidimensional Array View 
 View< double**[3][8] , Space > a(“a”,N,M); 
 Allocate array data in memory Space with dimensions [N][M][3][8] 
? C++17 improvement to allow  View<double[ ][ ][3][8],Space> 

 a(i,j,k,l) : User’s access to array datum 
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory 
 Optional array bounds checking of indices for debugging  

 View Semantics: View<double**[3][8],Space> b = a ; 
 A shallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data 
 Analogous to C++11 std::shared_ptr 

 deep_copy( destination_view , source_view ); 
 Copy data from ‘source_view’ to ‘destination_view’ 
Kokkos policy: never hide an expensive deep copy operation 
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Polymorphic Multidimensional Array Layout 
 Layout mapping : a(i,j,k,l) → memory location 
 Layout is polymorphic, defined at compile time 
 Kokkos chooses default array layout appropriate for “Space” 
 E.g., row-major, column-major, Morton ordering, dimension padding, ... 

 User can specify Layout : View< ArrayType, Layout, Space > 
 Override Kokkos’ default choice for layout 
 Why?  For compatibility with legacy code, algorithmic performance tuning, ... 

 Example Tiling Layout 
 View<double**,Tile<8,8>,Space> m(“matrix”,N,N); 
 Tiling layout transparent to user code : m(i,j) unchanged 
 Layout-aware algorithm extracts tile subview 
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Multidimensional Array Subview & Attributes 
 Array subview of array view (new) 
 Y = subview( X , ...ranges_and_indices_argument_list... ); 
 View of same data, with the appropriate layout and index map 
 Each index argument eliminates a dimension 
 Each range [begin,end) argument contracts a dimension 

 Access intent Attributes 
View< ArrayType, Layout, Space, Attributes > 

 How user intends to access datum 
 Example, View with const and random access intension 

 View< double ** , Cuda > a(“mymatrix”, N, N ); 
 View< const double **, Cuda, RandomAccess > b = a ; 
Kokkos implements  b(i,j)  with GPU texture cache 
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Multidimensional Array functionality being 
considered by ISO/C++ standard committee 
 TBD: add layout polymorphism – a critical capability 
 To be discussed at May 2015 ISO/C++ meeting 

 TBD: add explicit (compile-time) dimensions 
 Minor change to core language to allow: T[ ][ ][3][8] 
 Concern: performance loss when restricted to implicit (runtime) dimensions 

 TBD: use simple / intuitive array access API: x(i,j,k,l) 
 Currently considering : x[ { i , j , k , l } ] 
 Concern: performance loss due to intermediate initializer list 

 TBD: add shared pointer (std::shared_ptr) semantics 
 Currently merely a wrapper on user-managed memory 
 Concern: coordinating management of view and memory lifetime  
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Easy Parallel Patterns with C++11 and Defaults 
parallel_pattern( Policy<Space> , UserFunction ) 

 Easy example BLAS-1 AXPY with views 
parallel_for( N , KOKKOS_LAMBDA( int i ){ y(i) = a * x(i) + y(i); } );  
 Default execution space chosen for Kokkos installation 
 Execution policy “N” => RangePolicy<DefaultSpace>(0,N) 
 #define KOKKOS_LAMBDA [=]                       /* non-Cuda */ 
 #define KOKKOS_LAMBDA [=]__device__  /* Cuda 7.5 candidate feature */ 

 Tell NVIDIA Cuda development team you like and want this in Cuda 7.5 ! 

 More verbose without lambda and defaults: 
struct axpy_functor { 
  View<double*,Space> x , y ; double a ; 
  KOKKOS_INLINE_FUNCTION 
  void operator()( int i ) const { y(i) = a * x(i) + y(i); } 
  // ... constructor ... 
}; 
parallel_for( RangePolicy<Space>(0,N) , axpy_functor(a,x,y) ); 
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Kokkos Manages Challenging Part of 
Patterns’ Implementation 
 Example: DOT product reduction 

parallel_reduce( N , KOKKOS_LAMBDA( int i , double & value ) 
                                { value += x(i) * y(i); } 
                              , result );   
 Challenges: temporary memory and inter-thread reduction operations 
 Cuda shared memory for inter-warp reductions 
 Cuda global memory for inter-block reductions 
 Intra-warp, inter-warp, and inter-block reduction operations 

 User may define reduction type and operations 
struct my_reduction_functor {  
  typedef ... value_type ; 
  KOKKOS_INLINE_FUNCTION void join( value_type&, const value_type&) const ; 
  KOKKOS_INLINE_FUNCTION void init( value_type& ) const ; 
}; 
 ‘value_type’ can be runtime-sized one-dimensional array 
 ‘join’ and ‘init’ plugged into inter-thread reduction algorithm 
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Managing Memory Access Pattern: 
Compose Parallel Execution ○ Array Layout 

 Map Parallel Execution 
 Maps calls to function(iw) onto threads 
 GPU: iw = threadIdx + blockDim * blockIds 
 CPU: iw ∈[begin,end)Th  ; contiguous partitions among threads  

 Choose Multidimensional Array Layout 
 Leading dimension is parallel work dimension 

 Leading multi-index is ‘iw’ : a( iw , j, k, l ) 
 Choose appropriate array layout for space’s architecture 

 E.g., AoS for CPU and SoA for GPU 

 Fine-tune Array Layout 
 E.g., padding dimensions for cache line alignment 



Performance Impact of Access Pattern 
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 Molecular dynamics computational kernel in miniMD 
 Simple Lennard Jones force model: 
 Atom neighbor list to avoid N2 computations 
 

 

 

 Test Problem 
 864k atoms, ~77 neighbors 
 2D neighbor array 
 Different layouts CPU vs GPU 
 Random read ‘pos’ through 

GPU texture cache  
 Large performance loss 

with wrong array layout 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats 
  if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13) 
} 
f(i) = f_i; 
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Atomic operations 
atomic_exchange, atomic_compare_exchange_strong, 
atomic_fetch_add, atomic_fetch_or, atomic_fetch_and 

 Thread-scalability of non-trivial algorithms and data structures 
 Essential for lock-free implementations 
 Concurrent summations to shared variables 
 E.g., finite element computations summing to shared nodes 

  Updating shared dynamic data structure 
 E.g., append to a shared array or insert into a shared map 

 Portably map to compiler/hardware specific capabilities 
 GNU and CUDA extensions when available 
 Current: any 32bit or 64bit type, may use CAS-loop implementation 

 ISO/C++ 2011 and 2014 atomics not adequate for HPC 
 Proposed necessary improvements for C++17 



Thread-Scalable Fill of Sparse Linear System 
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 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏� 

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ? 
 Scatter-Atomic-Add 

+ Simpler 
+ Less memory 
– Slower HW atomic 

 Gather-Sum 
+ Bit-wise reproducibility 

 Performance win? 
 Scatter-atomic-add 
 ~equal Xeon PHI 
 40% faster Kepler GPU 

 Pattern chosen 
 Feedback to HW vendors: 

performant atomics 
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Core Abstractions and Capabilities (wrap up) 
 Abstractions 
 Identify / encapsulate grains of data and parallelizable operations  
 Aggregate these grains with data structure and parallel patterns  
 Map aggregated grains onto memory and cores / threads 

 Grains and Patterns 
 Parallelizable operation: C++11 lambda or C++98 functor 
 Parallel pattern: foreach, reduce, scan, task-dag, ... 
 Multidimensional array of datum 
 Atomic operations 

 Extensible Mappings 
 Polymorphic multidimensional array : space, layout, access intentions 
 Execution policy : where and how to execute 

 Next Step : Finer Grain Parallelism with Hierarchical Patterns 
 κόκκος : “like grains of sand on a beach” – how fine can we go? 

 
 



Outline 
 Core Abstractions and Capabilities 

 Portable Hierarchical Parallelism 
 Two-level thread-team execution policy and nested parallel patterns 
 Thread-team shared memory 
 Three-level execution policy 
 Application to molecular dynamics kernels 
 Application to tensor mathematics kernels 

 Initial Scalable Graph Algorithms (very new) 

 Conclusion 
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Thread Team Execution Policy 
 Expose and map more parallelism 
 Vocabulary 
 OpenMP: League of Teams of Threads 
 Cuda:        Grid      of Blocks of Threads 

 Thread Team Functionality 
 Threads within a team execute concurrently  
 Teams do not execute concurrently 
Nested parallel patterns: foreach, reduce, scan 
 Team-shared scratch memory 

 Thread Team Portability : map onto hardware 
 Cuda : team == thread block, possibly a sub-block group of warps 
 Xeon Phi : team == hyperthreads sharing L1 cache 
 CPU : team == thread 

 

parallel_for 

parallel_reduce 
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Thread Team Example: 
Sparse Matrix-Vector Multiplication 

 Traditional serial compressed row storage (CRS) algorithm: 
for ( int i = 0 ; i < nrow ; ++i ) 
  for ( int j = irow(i) ; j < irow(i+1) ; ++j ) 
    y(i) += A(j) * x( jcol(j) ); 

 Thread team algorithm, using C++11 lambda 
typedef TeamPolicy<Space> policy ; 
parallel_for( policy( nrow /* #leagues */ ), 
  KOKKOS_LAMBDA( policy::member_type const & member ) { 
    double result = 0 ; 
    const int i = member.league_rank(); 
    parallel_reduce( TeamThreadRange(member,irow(i),irow(i+1)), 
      [&]( int j , double & val ) { val += A(j) * x(jcol(j));},  
      result ); 
    if ( member.team_rank() == 0 ) y(i) = result ; 
  } 
);  
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Thread Team Shared Scratch Memory 
 Challenges 
 Multiple arrays residing in shared scratch memory 
 Arrays may have runtime dimensions 
 Arrays’ dimensions possibly dependent upon team size 

 Approach: reuse Kokkos abstractions 
 Shared scratch Memory Space of the Execution Space 
 Manage array with a View defined on this space 
 Thread team executing in the execution space is given an instance of the 

associated shared scratch memory space 

 Capability available via user defined functor 
 Typically need richer information than C++11 lambda can provide 
 ... example ... 
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Team Shared Scratch Memory Example 
struct my_functor { 
  typedef TeamPolicy<ExecutionSpace>              Policy ; 
  typedef ExecutionSpace::scratch_memory_space    Scratch ; 
  typedef View<double**,Scratch,MemoryUnmanaged>  SharedView ; 
  SharedView x , y ; 
  int nx , ny ; 
 
  KOKKOS_INLINE_FUNCTION 
  void operator()( Policy::member_type const & member ) const 
  { 
    Scratch shmem_space = member.team_shmem(); 
    x( shmem_space, member.team_size(), nx ); 
    y( shmem_space, member.team_size(), ny ); 
    // ... team fill of arrays ... 
    member.team_barrier(); 
    // ... team computations on arrays ... 
    member.team_barrier(); 
  } 
  // Query shared memory size before parallel dispatch: 
  size_t team_shmem_size( int team_size ) const { 
    return SharedView::shmem_size( team_size , nx ) + 
           SharedView::shmem_size( team_size , ny ); 
  } 
}; 
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Thread Team Execution Policy, 3rd Level 
 Add third level of Vector parallelism 
 Map algorithm’s thread teams onto hardware resources 
 Cuda :        “thread” == warp,              “vector lane” == thread of warp 
 Xeon Phi : “thread” == hyperthread, “vector lane” == SSE or AVX lane 

 Vector parallelism functionality 
 Vector lanes execute lock-step concurrently 
 Consistent parallel patterns at vector level: foreach, reduce, scan 
 New “single” pattern denoting only one vector lane performs operation 

 Portably covering all levels used in sophisticated Cuda kernels 

 C++11 lambda necessary for usability 
 Vector parallel lambdas nested within team parallel lambdas 
 Fortunately Cuda 6.5 supports C++ lambda within device kernels! 
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Application to Molecular Dynamics Kernel 
 

 
 

parFor i in natoms { 
   n = 0 
   bin_idx = bin_of(i); 
   for bin in stencil(bin_idx) { 
      for j in bin_atom_ids(bin) { 
         if( distance(i,j) < cut )  
           neighbor(i,n++) = j; 
      } 
   } 
} 

parForTeam base_bins in bins { 
   copy_to_shared(base_bins,shared_base_bins) 
   for bin_row in YZ_part_of(base_bins) { 
       copy_to_shared(bin_row,shared_bin_row)  
       parForTeam i in bin_atom_ids(shared_base_bins) {            
          parForVector i in bin_atom_ids(shared_base_bins) { 
             for j in bin_atom_ids(shared_bin_row) { 
                if( distance(i,j) < cut ) neighbor(i,n++) = j; 
              } 
           } 
       } 
    } 
} 

Atom Neighbor List Construction 
   - atom ids stored in a Cartesian grid (XYZ) locality-bin data structure 
   - atoms sorted by locality -> Non-Team algorithm has good cache efficiency 
   - using teams and shared memory to improve cache efficiency on GPU  
   - a team works on a set of neighboring bins, 1 bin per thread in the team  

Non-Team Algorithm  Team Algorithm 

 Previously a Cuda-specialized implementation 
 Now a portable implementation 
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Performance of a Complete Simulation Step 
 Timing data for isolated kernel not available 
 Comparing compute nodes of roughly equivalent power 

- 1/2 of K80 (i.e. one of the two GPUs on the board) 
- 2 Sockets of 8 Core Sandy Bridge with 2 wide SMT 
- 2 Sockets of 10 Core Power 8 chips with 8 wide SMT 

 CPUs using Team-Size 1 
 GPUs using Team-Size 2x32 
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Application to Tensor Math Library Kernels 
 Performed through Harvey Mudd College clinic program 
 Advisor/Professor: Jeff Amelang 
 Undergraduate team: Brett Collins, Alex Gruver, Ellen Hui, Tyler Marklyn 

 Project: re-engineer serial kernels to use Kokkos 
 Initially using “flat” range policy 
 Progressing to thread team policy for appropriate kernels 
 Several candidate kernels for team parallelism, results for: 
 Multi-matrix multiply : ∀ 𝑐,𝑑, 𝑒 :𝑉 𝑐,𝑑, 𝑒 = ∑ 𝐴 𝑐,𝑝,𝑑 ∗ 𝐵𝑝 𝑐,𝑝, 𝑒  

 Thread team  
 Outer (league level) parallel_for over dimension ‘c’ 
 Inner (team level) parallel_reduce over summation dimensions p  
 Inner (team level) parallel_for over tensor dimensions d, e 
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Application to Tensor Math Library Kernels 
 Performance of “multi-matrix multiply” tensor contraction 
 ∀ 𝑐,𝑑, 𝑒 :𝑉 𝑐,𝑑, 𝑒 = ∑ 𝐴 𝑐,𝑝,𝑑 ∗ 𝐵𝑝 𝑐,𝑝, 𝑒  
 d = e = 6, symmetric tensor 
 p = 27 point numerical integration of a hexahedral cell 
 c = # cells 

More parallelism 
available to map 

Team-synchronization  
overhead with nested 
parallelism 



Outline 
 Core Abstractions and Capabilities 

 Portable Hierarchical Parallel Execution Policies 

 Initial Scalable Graph Algorithms 
 Construction of sparse matrix graph from finite element mesh 
 Breadth first search of highly variable degree graph 

 Conclusion 
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Thread-Scalable Construction of  
Sparse Matrix Graph from Finite Element Mesh 
  Given Finite Element Mesh Connectivity 
 { element → { nodes } } 
 View<int*[8],Space> element_node ; 

 Generate node→node graph 
 Compressed sparse row data structure 
 𝒏𝒏𝒏𝒏, 𝒄𝒄𝒄𝒄𝒄𝒄 𝒋 :  ∀ 𝒋 ∈ 𝒊𝒊𝒊𝒊 𝒏𝒏𝒏𝒏 … 𝒊𝒊𝒊𝒊 𝒏𝒏𝒏𝒏 + 𝟏 ,  ∀ 𝒏𝒏𝒏𝒏  
 node = node index, irow = offset array, column(j) = connected node index 

 Challenges 
 Determine unique node-node entries given redundant entries 
 { element → { nodes } } have shared faces and edges 

 Unknown number of node-node entries 
 Upper bound N2 is too large to allocate 
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Thread-Scalable Construction of  
Sparse Matrix Graph from Finite Element Mesh 

1. Parallel-for : fill Kokkos lock-free unordered map with node-node pairs 
 { element → { nodes } } : foreach element, foreach pair of nodes 
 Successful insert → atomic increment node’s column counts 

2. Parallel-scan : sparse matrix rows’ column counts generates row offsets 
 Last entry is total count of unique node-node pairs 

3. Allocate sparse matrix column-index array 
4. Parallel-for : query unordered map to fill sparse matrix column-index array 
 foreach entry in unordered map of node-node pairs 

5. Parallel-for : sort rows’ column-index subarray 
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Breadth First Search of Graph 
with Highly Varied Degree Vertices  
  Porting portions of MTGL to GPU via Kokkos 
 MTGL: Sandia’s multithreaded graph library 
 Internal laboratory directed research & development (LDRD) project 
 Sandia collaborators: Jonathan Berry and Greg Mackey 

 
 
 
 
 
 

 Evaluate suitability of Kokkos and GPU for graph algorithms 
 MTGL previously threaded for CPU via Qthreads  
 Ease and performance of layering MTGL on Kokkos ? 
 Performance of MTGL algorithms on GPU ? 

 

32 

MTGL: Multithreaded Graph Library 

Back-ends: Cuda, OpenMP, pthreads, Qthreads, ... 

Kokkos Containers & Algorithms 
Kokkos Core 



Breadth First Search of Graph 
with Vertices of Highly Varying Degree 
  Iterative frontier-advancing algorithm (conceptually simple) 
 Given a frontier set of vertices 
 Foreach edge associated with each vertex in the frontier 

if edge’s other vertex has not been visited, add to next frontier 

 Challenges for thread-scalability 
 Maximizing parallelism in “foreach edge of each frontier vertex” 
 Removing load imbalance in “foreach edge of each frontier vertex” 
 Set of edges will not fit in GPU memory (set of vertices will fit) 
 Concurrent growth of global frontier set 

 Strategy for thread-scalability 
 Manhattan loop collapse* of “foreach edge of each frontier vertex” 
 Thread-Team coordinated growth of global frontier set 

 
* technique used in Cray and LLVM compilers 
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Breadth First Search Algorithm 
 Graph implemented via compressed sparse row (CSR) scheme 
 𝒗, 𝒆𝒆𝒆𝒆 𝒋 :  ∀ 𝒋 ∈ 𝒊𝒊𝒊𝒊 𝒗 … 𝒊𝒊𝒊𝒊 𝒗 + 𝟏 ,  ∀ 𝒗  
 v = vertex index, irow = offset array, edge(j) = subarray of paired vertices 

 Given search result array of vertices : search(*)  
 [0..a) = vertex indices accumulated from previous search iteration 
 [a..b) = vertex indices of current search frontier 

1. Generate frontier vertex degree offset array ‘fscan’ 
 Frontier sub-array of vertex indices is search( [a..b) ) 
 parallel_scan of vertex degrees ( irow[v+1] – irow[v] ) to generate fscan 

2. Evaluate search frontier’s edges, #edges = fscan(b) – fscan(a) 
 parallel_for via TeamPolicy, each team searches range of edges 
 Each thread evaluates vertices of collection of edges 
 Atomic update to determine if first visit, append thread-local buffer 
 Intra-team parallel_scan of local buffers to count team’s search result 
 Append team’s search to global search array, only one atomic update 

3. Repeat for updated frontier 
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Breadth First Search Algorithm 
 Maximizing parallelism 
 Manhattan loop collapse facilitates parallelizing over edges, not vertices 
 Removes load imbalance concerns for highly variable degree vertices 

 Minimizing synchronization 
 Thread local buffer for accumulating search result 
 Intra-team parallel scan of thread local buffer sizes for team result size 
 Team’s single atomic update of global search array 

 Place arrays in appropriate memory spaces via Kokkos::View 
 Vertex arrays in GPU memory: irow(*), search(*), fscan(*) 
 Edge array in Host-Pinned memory: edge(*) 

 Performance evaluation of portable implementation 
 Scalability for graphs with highly variable degree vertices 
 CPU vs. GPU 
 Edge array in GPU vs. Host-Pinned 
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Breadth First Search Performance Testing 
 Sequence of generated test graphs 
 Doubling #vertices and #edges 
 Edges eventually cannot fit in GPU memory 
 Similar vertex degree histograms for all generated graphs 

 
 
 
 
 
 
 
 
 

 Start algorithm’s iteration on vertex of largest degree 
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Breadth First Search Performance Testing 
 Good scalability on Kepler 
 Teams stream through edge array with coalesced access pattern 
 Almost 2x performance drop reading edge array from Host Pinned memory 
 Enables processing of large graphs where edges cannot fit in GPU memory 
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Summary : Concepts and Abstractions 
 κόκκος : “like grains of sand on a beach” 
 Identify / encapsulate grains of data and parallelizable operations  
 Aggregate these grains with data structure and parallel patterns  
 Map aggregated grains onto memory and cores / threads 

 Mapping 
 User functions, execution spaces, parallel patterns, execution polices  
 Polymorphic multidimensional array, memory spaces, layout, access intent 
 Atomic operations 

 Hierarchical Parallel Patterns 
 Maximizing opportunity (grains) for parallelism 
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Conclusion 
 Kokkos enables performance portability 
 parallel_pattern( ExecutionPolicy<ExecutionSpace> , UserFunction ) 
 Polymorphic multidimensional arrays solves the array-of-structs versus 

struct-of-arrays dilemma 
 Atomic operations 
Engaging with ISO/C++ Standard to advocate for these capabilities 

 Pure library approach using C++ template meta-programming 
 Significantly simplified when UserFunction is a C++11 lambda 
 Cuda 7.5 candidate feature for device lambda : [=]__device__ 
 Tell NVIDIA you like and want this! 

 Thread team execution policy for hierarchical parallelism 
 Portable abstraction for Cuda grids, blocks, warps, and shared memory 

 Early R&D for application to graph algorithms  
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