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WHAT YOU WILL LEARN

> An iterative method to optimize your GPU code

> A way to conduct that method with NVIDIA Nsight EE

> Companion Code: https://github.com/chmaruni/nsight-gtc2015



INTRODUCING THE APPLICATION

Grayscale

Edges




INTRODUCING THE APPLICATION

> Grayscale Conversion

// r, g, b: Red, green, blue components of the pixel p
foreach pixel p:
p = 0.298839f*r + 0.586811f*g + 0.114350f*b;




INTRODUCING THE APPLICATION

» Blur: 7x7 Gaussian Filter

foreac h pixel p:
p = weighted sum of p and its 48 neighbors




INTRODUCING THE APPLICATION

> Edges: 3x3 Sobel Filters

HEEEEEREEEEEEEEEEEEE foreach pixel p:
EEEEEEEEEEEEEEEEEEE Gx = weighted sum of p and its 8 neighbors
EEEEEEEEEEEEEEEEEEE Gy = weighted sum of p and its 8 neighbors
EEEEEEERE HEEEN p = sqrt(Gx + Gy)
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Weights for Gx: Weights for Gy:




ENVIRONMENT

> NVIDIA Tesla K40m
> GK110B
> SM3.5
» ECC off
> 3004 MHz memory clock, 875 MHz SM clock

> NVIDIA CUDA 7.0 release candidate

» Similar results are obtained on Windows



oPUm
PERFORMANCE OPTIMIZATION CYCLE

1. Profile
Application

2. ldentify
Performance
Limiter

5. Change and
Test Code

3. Analyze Profile
& Find Indicators

N8 4. Reflect

4b. Build Knowledge

Chameleon from http://www.vectorportal.com, Creative Commons



PREREQUISITES

> Basic understanding of the GPU Memory Hierarchy

> Global Memory (slow, generous)
> Shared Memory (fast, limited)

> Registers (very fast, very limited)
> (Texture Cache)

» Basic understanding of the CUDA execution model

> Grid 1D/2D/3D
> Block 1D/2D/3D
> Warp-synchronous execution (32 threads per warp)
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APUY CREATE A NEW NVVP SESSION

" Create New Session
Executable Properties

Set executable properties

Connection: Local v| |I~.*1anage...|

Toolkit: CUDA Toolkit 7.0 (C./Program Files/NVIDIA GPU Computing Toolkit,
File:

Working directory:

Arguments:

Environment: Mame Value

Cancel




AP0 THE PROFILER WINDOW

% NVIDIA Visual Profiler
File View Run Help
=Vl-ﬂ#‘.'i. 'I'D - ""1)' R E]
% *nsight-gtc2015-step-00.nvprof.device_K40m_cc35.aTimeline & =g
03155

E Properties &2

Compute
=l Process "claw.ppm” (40381)

4 Duration
=I Thread 1719408416

Session 522327 ms (522,326...
Kernels 5.903 ms (5,902,576 ...
Compute Utilization 1.1%

Runtime API

Driver AP
Profiling Overhead
=/ [0] Tesla K40m
=] Context 1 (CUDA)
T MemCpy (HtoD)
" 88.7% gaussian filter 7x7
T 8.1% sobel filter_3x3 v0(in...

" 3.2% rgba_to_grayscale k..
=] Streams

Default

4
Analysis &2 . o) Details| i Settings| Bl Console
B 4, Export PDF Report Results
1. CUDA Application Analysis

The guided analysis system walks you through the various analysis stages to *

help you understand the optimization opportunities in your application.
fnmsilimmmithtismntisinstinmmanasssmssenn explore
the indivi izing your
applicati¢ 1ovement
capabiliti cation's
overall G els.

Determing n
applicatio - - it is not
already available.

‘ iy, Examine Individual Kernels

Determine which kemels are the most performance critical and that have the most
oppertunity for improvement. This analysis requires utilization data from every
kernel, so your application will be run once to collect that data if it is not already
available,

iy, Delete Existing Analysis Information

¥ the application has changed since the last analysis then the existing analysis
information may be stale and should be deleted before continuing.




AP TIMELINE

% *nsight-gtc2015-step-00.nvprof.device_K40m_cc35.aTimelin

=| Process "claw.
—=| Thread 1719408416
Runtirme API
Driver API
Profiling Cverhead
—=| [0] Tesla K40m
= Context 1 (CUDA)
F MemCpy (HtoD)

—| Compute

gba_to_grayscale_k...
—| Streams

Default




ARSI EXAMINE INDIVIDUAL KERNELS

(GUIDED ANALYSIS)

ettings| & Console
iy, Export PDF Report
1. CUDA Application Analysis

The guided analy m w ou through the various ana

help you understand th timization opportunities in your applic

Once you become familiar with the optimization proc Ou can ex

the individual an: stages in an unguided mode. V ing your
application it is important to fully utilize the compute and data movement
capahbilities of the GPU. To do this you should look at your application's
overall GPU usage as well as the performance of individual kernels.

| iy, Examine GPU Usage
Determine your application's overall GPU usage. This analysis requires an

applicatic 1eling, so your application will be run once to collect it if it is not
already available,

| i, Examine Individual Kernels

Determir lich kernels are the most performance critical and that have the most
opportunity for impr ent. This analysis requires utilization data from every
: ur application will be run once to collect that data if it is not already

iy, Delete Existing Analysis Information

If the application has changed since the last analysis then the ing analysis
information may be stale and should be deleted before continuing.




IDENTIFY HOTSPOT

Results

i Kernel Optimization Priorities

The following kernels are ordered by optimization importance based on execution time and achieved occup
performance compared to lower ranked kernels.

Rank Description

100 [1 kernel instances ] gaussian_filter_7x7_v0(int, int, unsigned char const *, unsigned char*)

g [ 1 kernel instances | sobel_filter /0(int, int, unsigned char const * unsigned char*®)

.

3 [ 1 kernel instances ] rgba_to_grayscale_kernel_v0{int, int, uchard const * unsigned char*)

> ldentify the hotspot: gaussian_filter_7x7_v0()

Original Version 5.233ms




AP PERFORM KERNEL ANALYSIS

‘, NVIDIA Visual Profiler
i i Run Help
&l = g =g Sy v | ) & I E].S- —
| 8 *nsight-gtc2015-step-00.nvprof.device_K40m_cc35.aTimeline &2 E Properties 2

032s 03225 gaussian_filter_7x7_vO0(int, int, unsigned char const *, unsigned char*)

Start 321303 ms (321,30 «
End 326.536 ms (326,53
Duration 5.233 ms (5,232,98( =
Grid Size [320,2001]
e i Block Size [881]
S S Registers/Thread 51

Shared Memory/Block 0B
" 3.2% rgba_to_grayscale_k... e Ao
] <

Profiling Overhead
—| [0] Tesla K40m
=| Context 1 (CUDA)
W MemiCpy (HtoD)
= Compute
I 88.7% gaussian_filter_7x7_...
T 8.1% sobel_filter_3x3_v0(in...

T Analysis &2 [ Details| T Settings| B Console

i= Results

1. CUDA Application Analysis i Kernel Optimization Priorities
The following kernels are ordered by optimization importance based on execution time and achie ancy. OpUTIZauon or rgiier
ranked kernels (those that appear first in the list) is more likely to improve performance comp er ranked kernels.

2. Performance-Critical Kernels

The results on the right show your application's
kernels ordered by potential for performance
improvement. Starting with the kernels with the 100 [ 1 kernel instances ] gaussian_filter_7x7_v0(int, int, unsigned char const *, unsigned char*)
highest ranking, you should select an entry from g
the table and then perform kernel analysis to

discayer additional optimization appartunities. 3 [ 1 kernel instances ] rgba_to_grayscale_kernel_vO(int, int, uchar4 const * unsigned char®)

Rank Description

[ 1 kernel instances ] sobel_filter_3x3_vO(int, int, unsigned char const * unsigned char®)

i Perform Kernel Analysis

ernel from the table at right or from the
timeline to enable kernel analysis. This analysis
requires detailed profiling data, so your application
will be run once te collect that data for the kernel if it
is not already available.

Ay, Perform Additional Analysis

You can collect additional information to help
identify kernels with potential performance problems.
After running this analysis, select any of the new
results at right to highlight the individual kernels for




ARUESSY |DENTIFY PERFORMANCE LIMITER

Results

i Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance
of "Tesla K40m". These utilization levels indicate that the performance of the kernel is most likely limited by the
latency of arithmetic or memory operations. Achieved compute throughput and/or memory bandwidth below 60%

of peak typically indicates latency issues.

- Memory operations

|:| Caontrol-flow operations

B Arithmetic operations

- Memory (Load/Stare Instruc...

Utilization




ARUSESY PERFORMANCE LIMITER CATEGORIES

~Memory Utilization vs Compute Utilization
> Four possible combinations:

60%

—

Comp Mem

Compute
Bound

—

Comp Mem

Bandwidth
Bound

L]

Comp Mem

Latency
Bound

Comp Mem

Compute and
Bandwidth
Bound



AP \DENTIFY PERFORMANCE LIMITER

Results

i Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance
of "Tesla K40m". These utilization levels indicate that the performance of the kernel is most likely limited by the
latency of arithmetic or memory operations. Achieved compute throughput and/or memory bandwidth below 60%

of peak typically indicates latency issues.

- Memory operations

|:| Caontrol-flow operations

B Arithmetic operations

- Memory (Load/Stare Instruc...

Utilization




AP | OOKING FOR INDICATORS

T Analysis £2 . [o) Details| Cw Settings| & Console
iy, Export PDF Report

1. CUDA Application Analysis

2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

The first step in analyzing an individual kernel is to
determine if the performance of the kernel is
bounded by computation, memory bandwidth, ar
instruction/memory latency. The results at right
indicate that the performance of kernel
"gaussian_filter_7x7 _v0" is most likely limited by
instruction and memary latency.

e, Perform Latency Analysis

he most likely bottleneck to performance for this kernel is
instruction and memory latency so you should first
perform instruction and memeory latency analysis to
determine how it is limiting performance,

| Y, Perform Compute Analysis |

| iy Perform Memory Bandwidth Analysis |

Compute and mernory bandwidth are likely not the

Stall Reasons

pipe other

busy N~
! _M\““\ /_ synchronization

p — —texture
T~ memory
dependency
=

.. execution
dependency

constant E——

instruction
fetch

memaory
throttle

T not

selected




LOOKING FOR MORE INDICATORS

% *nsight-gtc2015-step-00.nvprof.device_K40m_cc35.aTimeline e nsight-gtc2015.cu

// Early exit if the
if( lin_img(x, vy, w,
return;

// Load the 48 nei
int n[7][7];
for( int j = -3 ; j <=3 ; +3j )
for( int 1 = -3 ; 1 <=3 ; ++i )
n[j+3]1[1+3] = in_img(x+i, y+j, w, h) ? (int) src[(y+j)*w + (x+i)] : @;

noour

a

// Compute the convolution.
T Analysis &2 . [o) Details | T Settings| B Console
4 Reset All [, Analyze All Results

gaussian_filter_7x7_v0(int, int, unsigned chai * 4 Global Memory Alignment and Access Pattern

. Memory bandwidth is used most efficiently when each global memory load and store has proper alignment and access pattern.

Kernel Performance Limiter o Y 9 y prop g P
Optimization: Select each entry below to open the source code to a global load or store within the kernel with an inefficient alignmer

Kernel Latency access pattern. For each load or store improve the alignment and access pattern of the memory access.

Kernel Compute i i i ~
4 Line / File nsight-gtc2015.cu

243 Global Load L2 Transactions/Access
243 Global Load L2 Transactions/Access
243 Global Load L2 Transactions/Access
243 Global Load L2 Transactions/Access

, Ideal Transactions/Access = 1 [ 637602 L2 transactions for 128000 total e
, Ideal Transactions/Access = 1 [ 511040 L2 transactions for 128000 total e
, Ideal Transactions/Access = 1 [ 511680 L2 transactions for 128000 total e
Ideal Transactigns/Access = 1 [ 637203 L2 transactions for 128000 total e
, Ideal Transg Access = 1 [ 511360 L2 transactions for 128000 total e

Access = 1 [ 637602 L2 transactions for 128000 total e
/Access = 1 [ 638001 L2 transactions for 128000 total e

Kernel Memory

Shared Memory Access Pattern 243 Global Load L2 Transactions/Access =
243 Global Load L2 Transactions/Access
Divergent Execution 243 Global Load L2 Transactions/Access

wow o B oo




APUEY MEMORY TRANSACTIONS: BEST CASE

L :' /, _ =

> A warp issues 32x4B aligned and consecutive load/store request
> Threads read different elements of the same 128B segment

1x 128B load/store request per

1x 128B L1 transaction per

4x 32B L2 transactions per

> 1x L1 transaction: 128B needed / 128B transferred
» 4x L2 transactions: 128B needed / 128B transferred




AP MEMORY TRANSACTIONS: WORST CASE

.0 @'
—

> Threads in a warp read/write 4B words, 128B between words
> Each thread reads the first 4B of a 128B segment

1x 128B load/store request per

1x 128B L1 transaction per

1x 32B L2 transaction per

» 32x L1 transactions: 128B needed / 128B transferred
» 32x L2 transactions: 128B needed / 32B transferred



APUEY TRANSACTIONS AND REPLAYS

> Awarp reads from addresses spanning 3 lines of 128B

> 1 instr. executed and 2 replays = 1 request and 3 transactions

Instruction issued Instruction re-issued Instruction re-issued

v

Time



APUEY TRANSACTIONS AND REPLAYS

> With replays, requests take more time and use more resources
More instructions issued
> More memory traffic
Increased execution time

Inst. O Inst. 1 Inst. 2 Inst. O Inst. 1 Inst. 2
Issued Issued Issued Completed | | Completed | | Completed
| | 1
Extra work (SM) Extra latency

Transfer data for inst. 0

Transfer data for inst. 1

Transfer data for inst. 2

v



AP CHANGING THE BLOCK LAYOUT

» Qur blocks are 8x8

=========== threadIdx.x (str‘i&le-l, uchar)
EENEEEEEEEER
AEEEEEEEEEE

threadldx.y

ANEEEEEEEEEEEEEEEEE
SESEEEEEEEEEEaEaES
SEEERNEEEEEEEREEER
SEENNMMMEEEEEEEEER |
ANEEEEEEEEEEEEEEEEE Il Y
AEEEEEEEEEEEEEEEEEE

L Data Overtetch

IIIIIIIIIIIIIIII1

41 42 43 44 45 46 47 [ [ [ (N (L
RO | | [ [ (TP T Tl ]
Illllllrlllll

}

» We should use blocks of size 32x2



APUY IMPROVED MEMORY ACCESS

> Blocks of size 32x2

> Memory is used more efficiently

Original Version 5.233ms

Better Memory Accesses 1.589ms
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PERF-OPT QUICK REFERENCE CARD

Problem: Memory is accessed inefficiently => high latency
Goal: Reduce #transactions/request to reduce latency

Indicators: Low global load/store efficiency,
High #transactions/#request compared to ideal

Strategy: Improve memory coalescing by:
« Cooperative loading inside a block
« Change block layout
« Aligning data
« Changing data layout to improve locality
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PERF-OPT QUICK REFERENCE CARD

Problem: Too much unused data clogging memory system
Goal: Reduce traffic, move more useful data per request

Indicators: Low global load/store efficiency,
High #transactions/#request compared to ideal

Strategy: Improve memory coalescing by:
« Cooperative loading inside a block
« Change block layout
« Aligning data
« Changing data layout to improve locality
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ITERATION 2
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i Kernel Optimization Priorities

The following kernels are ordered by optimization importance based on execution time and achieved c

of higher ranked kernels (those that appear first in the list) is more likely to improve performance comp
kernels.

Rank Description

100 [ 1 kernel instances ] gaussian_filter_7x7_v0(int, int, unsigned char const *, unsigned char*)

28 [ 1 kernel instances ] sobel_filter_3x3_v0(int, int, unsigned char const * unsigned char*)

11 [ 1 kernel instances | rgba_to_grayscale_kernel_v{int, int, uchar4 const * unsigned char*)

> gaussian_filter_7x7_v0() still the hotspot

Original Version 5.233ms

Better Memory Accesses 1.589ms




AP \DENTIFY PERFORMANCE LIMITER

Results
i Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla
K40m". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic
or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates

latency issues.

c
o
=
]
N
=
2




LOOKING FOR INDICATORS

o) Details | Cw Settings | & Console
iy, Export PDF Report
1. CUDA Application Analysis
2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

tep in analyzing an individual
determine if the performance of the kernel is
bounded by computation, memary bandwidth, or
instruction/memory latency. The results at right
te that the performance of kernel

7 _v0" is most likely limited by
instruction and memaory latency.

ikely bottleneck to perf
and memeory laten
perform instruction and mem

y latency analysis to
determine how it is limiting performance.

Iy Perform Compute Analysis

Stall Reasons

instruction
fetch

Mmemary
dependency
texture —_

synchronization 4

— ~_  Memory

other ——— ~ throttle

pipe -~ T
busy constant



AP <TALL REASONS:

EXECUTION DEPENDENCY

a=b+c; // ADD a = b[i], // LOAD

d=a+ e; // ADD d=a+ e; // ADD

> Memory accesses may influence execution dependencies
- Global accesses create longer dependencies than shared accesses

> Read-only/texture dependencies are counted in Texture

> Instruction level parallelism can reduce dependencies

Q

b + ¢; // Independent ADDs
e + T;




AU 1LP AND MEMORY ACCESSES

No ILP 2-way ILP (with loop unrolling)
float a = 9.0f; float a, a@ = 0.0f, al = 0.0f;
for( int i =@ ; i < N ; )

for( int i =0 ; i < N ; ++i )

= i > {
a += logf(b[i]); a0 += logf(b[i]);

al += logf(b[i+1]);

c = b[0@] }

a += logf(c) a = ao + al

c = b[1] @ = b[o]

a += logf(c) ==l i 1 = b[1]

c = b[2] 0 = b[2] al += logf(cl)
a += logf(c) 2 +2 LogF(Y0) i 1 = b[3]

c = b[3] al += logf(cl)

a += logf(c) l a =ao + al

> #pragma unroll is useful to extract ILP
> Manually rewrite code if not a simple loop



AP | OOKING FOR MORE INDICATORS

_| Properties i = 0O

gaussian_filter_7x7_vO0(int, int, unsigned char const *, unsigned char*)

Start 308.193 ms (308,19 =
End 309.782 ms (309,78
Duration 1.59 ms (1,589,569
Grid Size [ 80,8001 ]
Block Size [32,21]
Registers/Thread
Shared Memory/Block
Occupancy

Achieved

Theoretical

Limiter
Shared Memory Configuration




AP | OOKING FOR MORE INDICATORS

Warps

T Analysis 23 . Co) Details | Cw Settings | B Console

Threads/Block 1024
iy, Export PDF Report
Warps/Block

1. CUDA Application Analysis

. Block Limit
2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

Varying Block Size Varying Register Count Varying Shared Memory Usage
4. Instruction and Memory Latency

Instruction and memary latency limit the
performance of a kernel when the GPU does not
have enough work to keep busy. The results at right
indicate that the GPU does not have enough work

Warps Per SM

Threads Per Block Registers Per Thread Shared Memory Per Block (bytes)




AP L ATENCY

GPUs cover latencies by having a lot of work in flight

>

o
L]

Exposed latency

Fully covered latency

wapO L T T T T T T T T MM TTTTTTTT]

warp 1

warp 2

warp 3

ﬂlmD

. IEEEEEEEE B

warp 4

warp 5

warp 6
warp 7
warp 8
warp 9

|l  HEEEEN BN

No warp issuing



AP | ATENCY: LACK OF OCCUPANCY

> Not enough active warps

wapO L T T T T T T T T MM TTTTTTTT]
wapt ML LT T T T TN TTTTTTT]
warp 2  HIEEEEEEE EEEEEEE
warp 3 W[ TTTTTATTTTT]

| INNEEN | | EEEEEE

No warp issues

> The schedulers cannot find eligible warps at every cycle



APUY IMPROVED OCCUPANCY

> Bigger blocks of size 32x4

> Increases achieved occupancy slightly (from 47.6% to 52.4%)

Original Version 5.233ms
Better Memory Accesses 1.589ms

Higher Occupancy 1.562ms



PERF-OPT QUICK REFERENCE CARD

Problem: Latency is exposed due to low occupancy

Goal: Hide latency behind more parallel work

Indicators: Occupancy low (< 60%)
Execution Dependency High

Strategy: Increase occupancy by:
« Varying block size
« Varying shared memory usage
« Varying register count

C R R R N N &N R N _NR_N§N_NR_N_N_NJR_JN_N}R_§_J}N_©§N_J§N_N§R_§N_ N _§N_J}N_ N} §_ }~R_ }§N_ N}~/
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PERF-OPT QUICK REFERENCE CARD

Problem: Not enough independent work per thread
Goal: Do more parallel work inside single threads

Indicators: High execution dependency, increasing occupancy has
no/little positive effect, still registers available

Strategy: « Unroll loops (#pragma unroll)
« Refactor threads to compute n output values at
the same time (code duplication)

C R R R N N &N R N _NR_N§N_NR_N_N_NJR_JN_N}R_§_J}N_©§N_J§N_N§R_§N_ N _§N_J}N_ N} §_ }~R_ }§N_ N}~/
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ITERATION 3
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APUY DENTIFY HOTSPOT

Results

i Kernel Optimization Priorities

The following kernels are ordered by optimization importance based on execution time and achieved oc
of higher ranked kernels (those that appear first in the list) is more likely to improve performance compa
kernels.

Rank Description

100 [ 1 kernel instances ] gaussian_filter_7x7_vO(int, int, unsigned char const *, unsigned char*)

20 [ 1 kernel instances ] sobel_filter_3 0(int, int, unsigned char const *, unsigned char*)

12 [ 1 kernel instances ] rgba_to_grayscale_kernel_vO(int, int, uchar4 const * unsigned char®)

> gaussian_filter_7x7_v0() still the hotspot

Original Version 5.233ms
Better Memory Accesses 1.589ms

Higher Occupancy 1.562ms



IDENTIFY PERFORMANCE LIMITER

Results
i Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla
K40m". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic
or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates

latency issues.

Utilization




AP | OOKING FOR INDICATORS

Stall Reasons

___instruction
fetch

texture —
synchronization
other —~ _ e memaory

"~ throttle

"~ constant




il Analysis 2 . [ Details| T Settings | & Console
Jdy, Export PDF Report

1. CUDA Application Analysis

3. Compute, Bandwidth, or Latency Bound

The first step in analyzing an individual kernel is to
determine if the performance of the kernel is
bounded by computation, memory bandwidth, or
instruction/memory latency. The results at right
indicate that the performance of kernel
"gaussian_filter_7x7_v0" is most likely limited by
instruction and memory latency.

Ay, Perform Latency Analysis

The muost likely bottleneck to performance for this kernel is | —
instruction and memery latency so you should first I
perform instruction and memory latency analysis to
determine how it is limiting performance,

| Ay, Perform Compute Analysis

Ay, Perform Memory Bandy

Compute and memory bandwidth are

L2 Cache

L1 Reads

L1 Writes

Texture Reads
Atomic
Moncoherent Reads

Total
Texture Cache
Reads

Device Memory

Reads
Writes

Total

11568392
128000

0

0

0

11696392

128545
128002

256547

236.7 lomereps
2.619 GB/s
0B/fs

0Bfs

0 B/fs

239.333 GB/s

0B/s

2.63 GB/s
2.619 GB/s

5.249 GB/s




AP CHECKING L2 HIT RATE: 98.9%

File View :F'lun | Help

"\ | | Eg Generate Timeline
© *nsight-¢ "% Analyze Application

~p Collect Metrics and Events
Profilin ... Configure Metrics and Events

Mame

Metrics | Events
F] Cache

L1 Glebal Hit Rate
L1 Lecal Hit Rate
L2 Hit Rate (L1 Reads)
L2 Hit Rate ( ure Reads)
L2 Threughput (L1 Reads)
L2 Threughput (Texture Reads)
L2 Throughpu i
L2 Throughput (Wri
L1/5hared Memory Utilization

Duration L2 Hit Ra



APUEY SHARED MEMORY

> Adjacent pixels access similar neighbors in Gaussian Filter

> We should use shared memory to store those common pixels

__shared__ unsigned char smem_pixels[10][64];



APUEY SHARED MEMORY

> Using shared memory for the Gaussian Filter

> Significant speedup, < 1ms

Original Version 5.233ms
Better Memory Accesses 1.589ms
Higher Occupancy 1.562ms

Shared Memory 0.911ms




PERF-OPT QUICK REFERENCE CARD

Problem: Long memory latencies are difficult to hide

Goal: Reduce latency, move data to faster memory

Indicators: Shared memory not occupancy limiter
High L2 hit rate
Data reuse between threads and small-ish working set

Strategy: (Cooperatively) move data to:
« Shared Memory
* (or Registers)
e (or Constant Memory)
* (or Texture Cache)

C R R R N N &N R N _NR_N§N_NR_N_N_NJR_JN_N}R_§_J}N_©§N_J§N_N§R_§N_ N _§N_J}N_ N} §_ }~R_ }§N_ N}~/
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PERF-OPT QUICK REFERENCE CARD

Problem: Too much data movement
Goal: Reduce amount of data traffic to/from global mem

Indicators: Higher than expected memory traffic to/from global
memory
Low arithmetic intensity of the kernel

Strategy: (Cooperatively) move data closer to SM:
« Shared Memory
* (or Registers)
* (or Constant Memory)
e (or Texture Cache)
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APUY DENTIFY HOTSPOT

i Kernel Optimization Priorities

The following kernels are ordered by optimization importance based on execution time and achieved ¢
higher ranked kernels (those that appear first in the list) is more likely to improve performance compars

Rank
100

L

20

Description

[ 1 kernel instances | gaussian_filter_7x7_v2(int, int, unsigned char const *, unsigned char®)
[ 1 kernel instances ] sobel_filter_3x3_v0(int, int, unsigned char const * unsigned char®)

[ 1 kernel instances ] rgba_to_grayscale_kernel_v0{int, int, uchard const * unsigned char®)

» gaussian_filter_7x7_v0() still the hotspot

Original Version

5.233ms

Better Memory Accesses 1.589ms

Higher Occupancy

Shared Memory

1.562ms
0.911ms




AP \DENTIFY PERFORMANCE LIMITER

Results

i Kernel Performance Is Bound By Compute And Memory Bandwidth

For device "Tesla K40m" compute and memory utilization are balanced. These utilizatio
good, but that additional performance improvement may be possible if either of both ¢

are increased.

Utilization




AP | OOKING FOR INDICATORS

Analysis o) Details | Cal Settings | B Co
3| Iy, Export PDF Report
1. CUDA Application Analysis

2. Performance-Critical Kernels

3. Compute, Bandwi..., or Latency Bound

The first step in analyzing an individual kernel
is to determine if the performance of the

kernel is bounded by computation, memaory
bandwidth, or instruction/memary latency. The
results at right indicate that the performance

of kernel "gaussian_filter_7x7 _v5" is most likely
limited by both compute and memory

bandwidth.

@
=
@
-
=
o
=
]
M
=
2

r Bandwidth Analysis
ly bottlenecks to
performance for this kernel, yu should fi
perferm both compute and memory analy
deterrine how they are limiting performance,
dy, Perform Latency Analysis

Latency is likely not the primary perfermance




AP | OOKING FOR MORE INDICATORS

o Analysis &3 . [oy Details| T Settings| & Cofl ResUlts

= 1, Export PDF Report Transactions Bandwidth Utilization
L1/Shared Memaory

Local Loads 0 0B/s

2. Performance-Critical Kernels Local Stores 0 0B/s
Shared Loads 2304000 1,438.543 GB/s

3. Compute, Bandwi..., or Latency Bound Shared Stores 640000 399.873 GB/s

The first step in analyzing an individual kernel Global Loads 0 0 B/s
is to determine if the performance of the Global Stores 128000 9.997 GB/s
kernel is bounded by computation, memary Atomic 0 0 B/fs
bandwidth,‘ ar inst_ruction,-‘memor}r latency. The L1/Shared Total 3072000 1,849.413 GB/s
results at right indicate that the performance

of kernel "gaussian_filter_7x7_v5" is most likely L2 Cache

limited by both compute and memory
bandwidth,

1. CUDA Application Analysis

L1 Reads 0 0B/s
L1 Writes 128000 9.997 GB/s
iy, Perform Compute Analysis | B Texture Reads 737777 59.183 GB/s

B Atomic 0 0B/s
, Perform Memory Bandwidth Analysis| MNoncoherent Reads 757778 59.183 GB/s

Both compute and memory are likely bottlenecks to Total 1643555 128.362 GB/s
perfermance for this kernel, so you should first

perform both compute and memery analysis to Texture Cache

determine how they are limiting performance.

iy, Perform Latency Analysis

Latency is likely not the primary performance




AP INSTRUCTION THROUGHPUT

> Each SM has 4 schedulers (Kepler)
> Schedulers issue instructions to pipes

> A scheduler issues up to 2 instructions/cycle

> Sustainable peak is 7 instructions/cycle per SM (not 4x2 = 8)

> A scheduler issues inst. from a single warp

> Cannot issue to a pipe if its issue slot is full



AP INSTRUCTION THROUGHPUT

Schedulers and pipe
saturated

Load Control Load Control Load Control
Store Texture ALU Texture ALU Texture Flow ALU

Flow Store Flow Store

Schedulers saturated Pipe saturated




ABUEEEY READ-ONLY CACHE (TEXTURE UNITS) @

Skip LSU
Cache loads



APUEY READ-ONLY PATH

> Annotate read-only parameters with const __restrict

__global  void gaussian_filter 7x7 _v2(int w, int h, const uchar *__restrict src, uchar *dst)

> The compiler generates LDG instructions: 0.808ms

Original version 5.233ms
Better memory accesses 1.589ms

Higher Occupancy 1.562ms

Shared memory 0.911ms
Read-Only path 0.808ms
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PERF-OPT QUICK REFERENCE CARD

Problem: Load/Store Unit becomes bottleneck
Goal: Relieve Load/Store Unit from read-only data

Indicators: High utilization of Load/Store Unit, pipe-busy stall
reason, significant amount of read-only data

Strategy: Load read-only data through Texture Units:
« Annotate read-only pointers with const
__restrict__
« Use __ldg() intrinsic
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Results

i Kernel Performance Is Bound By Compute And Memory Bandwidth
and memory utilization are balanced. The:
performance rovement may be

levels indicate that kernel
ither of both of compute and

THE RESULT: 6.5X

Utilization

> Looking much better

> Things to investigate next
Reduce computational intensity (separable filter)
Increase Instruction Level Parallelism (process two elements per thread)

> The sobel filter is starting to become the bottleneck

Results

i Kernel Optimization Priorities
The following kernels are ordered by optimization importance based on execution time and achieved occu
of higher ranked kernels (those that appear first in the list) is more likely to improve performance compared

kernels.

Rank Description
[ 1 kernel instances ] sobel_filter (int, int, unsigned char const *, unsigned char®)

[ 1 kernel instances ] gaussian_filte
[ 1 kernel instances ] rgba_to_graysca




ABURY MORE IN OUR COMPANION CODE

Original version 5.233ms
Better memory accesses 1.589ms
Higher Occupancy 1.562ms
Shared memory 0.911ms
Read-Only path 0.808ms

Separable filter 0.481ms

Process two pixels per thread (memory efficiency + ILP) 0.415ms
Use 64-bit shared memory (remove bank conflicts) 0.403ms
Use float instead of int (increase instruction throughput) 0.363ms

Your next idea!!!

Companion Code: https://github.com/chmaruni/nsight-gtc2015
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ITERATIVE OPTIMIZATION WITH NSIGHT EE

> Trace the Application
> |dentify the Hotspot and Profile it

> |dentify the Performance Limiter
> Memory Bandwidth
> Instruction Throughput
> Latency

> Look for indicators

> Take nvvp guided analysis as a starting point
> But don’t follow it too closely

> Optimize the Code
> |terate

™




REFERENCES

> Performance Optimization: Programming Guidelines and GPU Architecture
Details Behind Them, GTC 2013

http://on-demand.gputechconf.com/gtc/2013/video/S3466-Performance-Optimization-
Guidelines-GPU-Architecture-Details.mp4

http://on-demand.gputechconf.com/gtc/2013/presentations/53466-Programming-
Guidelines-GPU-Architecture.pdf

> CUDA Best Practices Guide

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

> Parallel Forall devblog
http://devblogs.nvidia.com/parallelforall/

> Upcoming GTC 2015 Sessions:

S5655 CUDA Application Development Life Cycle with Nsight Eclipse Edition (Hands-on
lab), Nikita Shulga, Thursday 2pm

$5353+55376 Memory Bandwidth Bootcamp (and Beyond), Tony Scudiero, Thursday
3:30pm and 5pm



NVIDIA REGISTERED DEVELOPER PROGRAMS

> Everything you need to develop with NVIDIA products

> Membership is your first step in establishing a working relationship with
NVIDIA Engineering

Exclusive access to pre-releases

Submit bugs and features requests

Stay informed about latest releases and training opportunities
Access to exclusive downloads

Exclusive activities and special offers

Interact with other developers in the NVIDIA Developer Forums

REGISTER FOR FREE AT: developer.nvidia.com
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