
CHRISTOPH ANGERER, NVIDIA

JULIEN DEMOUTH, NVIDIA

CUDA OPTIMIZATION WITH
NVIDIA NSIGHT™ ECLIPSE EDITION

An iterative method to optimize your GPU code

A way to conduct that method with NVIDIA Nsight EE

Companion Code: https://github.com/chmaruni/nsight-gtc2015

WHAT YOU WILL LEARN

Blur

INTRODUCING THE APPLICATION

Grayscale

Edges

Grayscale Conversion

// r, g, b: Red, green, blue components of the pixel p
foreach pixel p:
 p = 0.298839f*r + 0.586811f*g + 0.114350f*b;

INTRODUCING THE APPLICATION

Blur: 7x7 Gaussian Filter
foreach pixel p:
 p = weighted sum of p and its 48 neighbors

16 12 8 4

9 6 3

6 4 2

3 2 1

6 3

4 2

9

6

3 2 1

4 8 12

3 6 9

2 4 6

1 2 3

3 6 9

2 4 6

1 2 3

12

8

4

4

8

12

Image from Wikipedia

INTRODUCING THE APPLICATION

Edges: 3x3 Sobel Filters

foreach pixel p:
 Gx = weighted sum of p and its 8 neighbors
 Gy = weighted sum of p and its 8 neighbors
 p = sqrt(Gx + Gy)

-1 0 1

-2 0 2

-1 0 1

Weights for Gx:

1 2 1

0 0 0

-1 -2 -1

Weights for Gy:

INTRODUCING THE APPLICATION

NVIDIA Tesla K40m

GK110B

SM3.5

ECC off

3004 MHz memory clock, 875 MHz SM clock

NVIDIA CUDA 7.0 release candidate

Similar results are obtained on Windows

ENVIRONMENT

PERFORMANCE OPTIMIZATION CYCLE
1. Profile

Application

2. Identify

Performance

Limiter

3. Analyze Profile

& Find Indicators
4. Reflect

5. Change and

Test Code

4b. Build Knowledge
Chameleon from http://www.vectorportal.com, Creative Commons

Basic understanding of the GPU Memory Hierarchy
Global Memory (slow, generous)

Shared Memory (fast, limited)

Registers (very fast, very limited)

(Texture Cache)

Basic understanding of the CUDA execution model
Grid 1D/2D/3D

Block 1D/2D/3D

Warp-synchronous execution (32 threads per warp)

PREREQUISITES

ITERATION 1

CREATE A NEW NVVP SESSION

THE PROFILER WINDOW

Timeline

Analysis Results

Summary

Guide

TIMELINE

EXAMINE INDIVIDUAL KERNELS
(GUIDED ANALYSIS)

Launch

Identify the hotspot: gaussian_filter_7x7_v0()

IDENTIFY HOTSPOT

Hotspot

Kernel Time Speedup

Original Version 5.233ms 1.00x

PERFORM KERNEL ANALYSIS

Select

Launch

IDENTIFY PERFORMANCE LIMITER

Memory Utilization vs Compute Utilization

Four possible combinations:

PERFORMANCE LIMITER CATEGORIES

Comp Mem

Compute

Bound

Comp Mem

Bandwidth

Bound

Comp Mem

Latency

Bound

Comp Mem

Compute and

Bandwidth

Bound

60%

IDENTIFY PERFORMANCE LIMITER

Memory Ops

Load/Store

Memory Related Issues?

LOOKING FOR INDICATORS

Launch

Large number of memory

operations stalling LSU

LOOKING FOR MORE INDICATORS Unguided

Analysis

4-5 Global Load/Store

Transactions per 1 Request

MEMORY TRANSACTIONS: BEST CASE

A warp issues 32x4B aligned and consecutive load/store request

Threads read different elements of the same 128B segment

1x L1 transaction: 128B needed / 128B transferred

4x L2 transactions: 128B needed / 128B transferred

1x 128B L1 transaction per warp

4x 32B L2 transactions per warp

1x 128B load/store request per warp

MEMORY TRANSACTIONS: WORST CASE

Threads in a warp read/write 4B words, 128B between words

Each thread reads the first 4B of a 128B segment

32x L1 transactions: 128B needed / 32x 128B transferred

32x L2 transactions: 128B needed / 32x 32B transferred

1x 128B L1 transaction per thread

1x 32B L2 transaction per thread

1x 128B load/store request per warp Stride: 32x4B warp 2

Threads 24-31 Threads 0-7

TRANSACTIONS AND REPLAYS

A warp reads from addresses spanning 3 lines of 128B

1 instr. executed and 2 replays = 1 request and 3 transactions

Threads 8-15

Threads 16-23

Time

Instruction issued Instruction re-issued

1st replay

Threads

0-7/24-31

Threads

8-15

Instruction re-issued

2nd replay

Threads

16-23

1st line:

2nd line:

3rd line:

TRANSACTIONS AND REPLAYS

With replays, requests take more time and use more resources

More instructions issued

More memory traffic

Increased execution time

Inst. 0

Issued

Inst. 1

Issued

Inst. 2

Issued

Execution time

Threads

0-7/24-31

Threads

8-15

Threads

16-23

Inst. 0

Completed

Inst. 1

Completed

Inst. 2

Completed

Threads

0-7/24-31

Threads

8-15

Threads

16-23

Transfer data for inst. 0

Transfer data for inst. 1

Transfer data for inst. 2

Extra latency Extra work (SM)

Extra memory traffic

CHANGING THE BLOCK LAYOUT

Our blocks are 8x8

We should use blocks of size 32x2

Warp 0

Warp 1

27 28 29 30

36 37 38

44 45 46

52 53 54

21 22

13 14

20

12

4 5 6

24 25 26

32 33 34

40 41 42

48 49 50

16 17 18

8 9 10

0 1 2

19

11

3

51

43

35

31

39

47

55

23

15

7

60 61 62 56 57 58 59 63

4 5 6 0 1 2 3 7 13 14 12 8 9 10 11 15 21 22 20 16 17 18 19 23 27 28 29 30 24 25 26 31

36 37 38 32 33 34 35 39 44 45 46 40 41 42 43 47 52 53 54 48 49 50 51 55 60 61 62 56 57 58 59 63

threadIdx.x (stride-1, uchar)

27 28 29 30

36 37 38

44 45 46

52 53 54

21 22

13 14

20

12

4 5 6

24 25 26

32 33 34

40 41 42

48 49 50

16 17 18

8 9 10

0 1 2

19

11

3

51

43

35

31

39

47

55

23

15

7

60 61 62 56 57 58 59 63

27 28 29 30

36 37 38

44 45 46

52 53 54

21 22

13 14

20

12

4 5 6

24 25 26

32 33 34

40 41 42

48 49 50

16 17 18

8 9 10

0 1 2

19

11

3

51

43

35

31

39

47

55

23

15

7

60 61 62 56 57 58 59 63

27 28 29 30

36 37 38

44 45 46

52 53 54

21 22

13 14

20

12

4 5 6

24 25 26

32 33 34

40 41 42

48 49 50

16 17 18

8 9 10

0 1 2

19

11

3

51

43

35

31

39

47

55

23

15

7

60 61 62 56 57 58 59 63

Data Overfetch

IMPROVED MEMORY ACCESS

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

Blocks of size 32x2

Memory is used more efficiently

Category: Latency Bound – Coalescing

Problem: Memory is accessed inefficiently => high latency

Goal: Reduce #transactions/request to reduce latency

Indicators: Low global load/store efficiency,

High #transactions/#request compared to ideal

Strategy: Improve memory coalescing by:

• Cooperative loading inside a block

• Change block layout

• Aligning data

• Changing data layout to improve locality

PERF-OPT QUICK REFERENCE CARD

Category: Bandwidth Bound - Coalescing

Problem: Too much unused data clogging memory system

Goal: Reduce traffic, move more useful data per request

Indicators: Low global load/store efficiency,

High #transactions/#request compared to ideal

Strategy: Improve memory coalescing by:

• Cooperative loading inside a block

• Change block layout

• Aligning data

• Changing data layout to improve locality

PERF-OPT QUICK REFERENCE CARD

ITERATION 2

gaussian_filter_7x7_v0() still the hotspot

IDENTIFY HOTSPOT

Hotspot

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

IDENTIFY PERFORMANCE LIMITER

Still Latency Bound

LOOKING FOR INDICATORS
A lot of idle

time

Launch

Not enough work inside a thread to hide latency?

STALL REASONS:
EXECUTION DEPENDENCY

Memory accesses may influence execution dependencies

Global accesses create longer dependencies than shared accesses

Read-only/texture dependencies are counted in Texture

Instruction level parallelism can reduce dependencies

a = b + c; // ADD

d = a + e; // ADD

a = b[i]; // LOAD

d = a + e; // ADD

a = b + c; // Independent ADDs
d = e + f;

ILP AND MEMORY ACCESSES

#pragma unroll is useful to extract ILP

Manually rewrite code if not a simple loop

float a = 0.0f;
for(int i = 0 ; i < N ; ++i)
 a += logf(b[i]);

c = b[0]

No ILP 2-way ILP (with loop unrolling)

float a, a0 = 0.0f, a1 = 0.0f;
for(int i = 0 ; i < N ; i += 2)
{
 a0 += logf(b[i]);
 a1 += logf(b[i+1]);
}
a = a0 + a1 a += logf(c)

c = b[1]

a += logf(c)

c = b[2]

a += logf(c)

c = b[3]

a += logf(c)

c0 = b[0]

a0 += logf(c0)

c0 = b[2]

a0 += logf(c0)

c1 = b[1]

a1 += logf(c1)

c1 = b[3]

a1 += logf(c1)

a = a0 + a1

...

LOOKING FOR MORE INDICATORS

Not enough active warps to hide latencies?

LOOKING FOR MORE INDICATORS

LATENCY

GPUs cover latencies by having a lot of work in flight

warp 0

warp 1

warp 2

warp 3

warp 4

warp 5

warp 6

warp 7

warp 8

warp 9

The warp issues

The warp waits (latency)

Fully covered latency Exposed latency

No warp issuing

LATENCY: LACK OF OCCUPANCY

Not enough active warps

The schedulers cannot find eligible warps at every cycle

warp 0

warp 1

warp 2

warp 3

No warp issues

IMPROVED OCCUPANCY

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

Bigger blocks of size 32x4

Increases achieved occupancy slightly (from 47.6% to 52.4%)

Category: Latency Bound – Occupancy

Problem: Latency is exposed due to low occupancy

Goal: Hide latency behind more parallel work

Indicators: Occupancy low (< 60%)

Execution Dependency High

Strategy: Increase occupancy by:

• Varying block size

• Varying shared memory usage

• Varying register count

PERF-OPT QUICK REFERENCE CARD

Category: Latency Bound – Instruction Level Parallelism

Problem: Not enough independent work per thread

Goal: Do more parallel work inside single threads

Indicators: High execution dependency, increasing occupancy has

no/little positive effect, still registers available

Strategy: • Unroll loops (#pragma unroll)

• Refactor threads to compute n output values at

the same time (code duplication)

PERF-OPT QUICK REFERENCE CARD

ITERATION 3

gaussian_filter_7x7_v0() still the hotspot

IDENTIFY HOTSPOT

Hotspot

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

IDENTIFY PERFORMANCE LIMITER

Still Latency Bound

LOOKING FOR INDICATORS

Still high

execution

dependency,

but

occupancy OK

LOOKING FOR MORE INDICATORS

Is our working set mostly in L2$?

Medium L2

Bandwidth

Utilization

Very low device memory bandwidth utilization Launch

CHECKING L2 HIT RATE: 98.9%

Our working set is mostly in L2$

Can we move it even closer?

Adjacent pixels access similar neighbors in Gaussian Filter

We should use shared memory to store those common pixels

SHARED MEMORY

__shared__ unsigned char smem_pixels[10][64];

SHARED MEMORY

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

Shared Memory 0.911ms 5.74x

Using shared memory for the Gaussian Filter

Significant speedup, < 1ms

Category: Latency Bound – Shared Memory

Problem: Long memory latencies are difficult to hide

Goal: Reduce latency, move data to faster memory

Indicators: Shared memory not occupancy limiter

High L2 hit rate

Data reuse between threads and small-ish working set

Strategy: (Cooperatively) move data to:

• Shared Memory

• (or Registers)

• (or Constant Memory)

• (or Texture Cache)

PERF-OPT QUICK REFERENCE CARD

Category: Memory Bound – Shared Memory

Problem: Too much data movement

Goal: Reduce amount of data traffic to/from global mem

Indicators: Higher than expected memory traffic to/from global

memory

Low arithmetic intensity of the kernel

Strategy: (Cooperatively) move data closer to SM:

• Shared Memory

• (or Registers)

• (or Constant Memory)

• (or Texture Cache)

PERF-OPT QUICK REFERENCE CARD

ITERATION 4

gaussian_filter_7x7_v0() still the hotspot

IDENTIFY HOTSPOT

Hotspot

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

Shared Memory 0.911ms 5.74x

IDENTIFY PERFORMANCE LIMITER

Aha!

Getting into the high

utilization region

LOOKING FOR INDICATORS

Launch

LOOKING FOR MORE INDICATORS

Load/Store Unit is really busy!

Can we reduce the load?

INSTRUCTION THROUGHPUT

Each SM has 4 schedulers (Kepler)

Schedulers issue instructions to pipes

A scheduler issues up to 2 instructions/cycle
Sustainable peak is 7 instructions/cycle per SM (not 4x2 = 8)

A scheduler issues inst. from a single warp

Cannot issue to a pipe if its issue slot is full

SMEM/L1$

Registers

SM

Pipes Pipes Pipes Pipes

Sched Sched Sched Sched

INSTRUCTION THROUGHPUT

Sched Sched Sched Sched

Schedulers saturated

Utilization: 90%

Load

Store
Texture

Control

Flow
ALU

11% 8%

65%

6%

Sched Sched Sched Sched

Schedulers and pipe

saturated

4%

27%

Utilization: 92%

Load

Store
Texture

Control

Flow
ALU

90%

Sched Sched Sched Sched

Pipe saturated

78%

Utilization: 64%

Load

Store
Texture

Control

Flow
ALU

24%

4%

READ-ONLY CACHE (TEXTURE UNITS)

SMEM/L1$

Registers

SM

SMEM/L1$

Registers

SM

Global Memory (Framebuffer)

L2$

Texture Units Texture Units
Skip LSU

Cache loads

READ-ONLY PATH

Annotate read-only parameters with const __restrict

The compiler generates LDG instructions: 0.808ms

__global__ void gaussian_filter_7x7_v2(int w, int h, const uchar *__restrict src, uchar *dst)

Kernel Time Speedup

Original version 5.233ms 1.00x

Better memory accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

Shared memory 0.911ms 5.74x

Read-Only path 0.808ms 6.48x

Category: Latency Bound – Texture Cache

Problem: Load/Store Unit becomes bottleneck

Goal: Relieve Load/Store Unit from read-only data

Indicators: High utilization of Load/Store Unit, pipe-busy stall

reason, significant amount of read-only data

Strategy: Load read-only data through Texture Units:

• Annotate read-only pointers with const

__restrict__

• Use __ldg() intrinsic

PERF-OPT QUICK REFERENCE CARD

THE RESULT: 6.5X

Looking much better

Things to investigate next

Reduce computational intensity (separable filter)

Increase Instruction Level Parallelism (process two elements per thread)

The sobel filter is starting to become the bottleneck

MORE IN OUR COMPANION CODE

Kernel Time Speedup

Original version 5.233ms 1.00x

Better memory accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

Shared memory 0.911ms 5.74x

Read-Only path 0.808ms 6.48x

Separable filter 0.481ms 10.88x

Process two pixels per thread (memory efficiency + ILP) 0.415ms 12.61x

Use 64-bit shared memory (remove bank conflicts) 0.403ms 12.99x

Use float instead of int (increase instruction throughput) 0.363ms 14.42x

Your next idea!!!

Companion Code: https://github.com/chmaruni/nsight-gtc2015

SUMMARY

ITERATIVE OPTIMIZATION WITH NSIGHT EE

Trace the Application

Identify the Hotspot and Profile it

Identify the Performance Limiter

Memory Bandwidth

Instruction Throughput

Latency

Look for indicators

Take nvvp guided analysis as a starting point

But don’t follow it too closely

Optimize the Code

Iterate

REFERENCES
Performance Optimization: Programming Guidelines and GPU Architecture
Details Behind Them, GTC 2013

http://on-demand.gputechconf.com/gtc/2013/video/S3466-Performance-Optimization-
Guidelines-GPU-Architecture-Details.mp4

http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-
Guidelines-GPU-Architecture.pdf

CUDA Best Practices Guide

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

Parallel Forall devblog

http://devblogs.nvidia.com/parallelforall/

Upcoming GTC 2015 Sessions:

S5655 CUDA Application Development Life Cycle with Nsight Eclipse Edition (Hands-on
lab), Nikita Shulga, Thursday 2pm

S5353+S5376 Memory Bandwidth Bootcamp (and Beyond), Tony Scudiero, Thursday
3:30pm and 5pm

NVIDIA REGISTERED DEVELOPER PROGRAMS

Everything you need to develop with NVIDIA products

Membership is your first step in establishing a working relationship with
NVIDIA Engineering

Exclusive access to pre-releases

Submit bugs and features requests

Stay informed about latest releases and training opportunities

Access to exclusive downloads

Exclusive activities and special offers

Interact with other developers in the NVIDIA Developer Forums

 REGISTER FOR FREE AT: developer.nvidia.com

THANK YOU

