

Michał Kierzynka et al.

Poznan University of Technology

17 March 2015, San Jose

A SO TOWN AND A

The research has been supported by grant No. 2012/05/B/ST6/03026 from the National Science Centre, Poland.

DNA de novo assembly

- input: short reads (35-150bp)
- output: contigs (assembled parts of a genome)

Illumina Genome Analyzer II sequencer

TTTGC-C GA-CTC

AGCA

TTCTA

ATCA-AGCAAC

DNA de novo assembly

Input sequences:

- a multiset of overlapping reads over alphabet {A, C, G, T}
- may contain misreadings/errors
- come from both strands of the DNA double helix
- reverse complement sequences

Problems:

- large data sets: millions of reads
 (e.g. ~300GB for homo sapiens)
- exact algorithms are exponential
- quality of heuristics is often limited

DNA de novo assembly

DNA overlap graph:

- each read represented by a vertex
- overlapping sequences connected by an arc
- weights, e.g. corresponding alignment scores
- result: a Hamiltonian path for each connected component

Selection of overlapping sequences!

Selection of overlapping sequences:

- not feasible to compare every sequence with each other O(n²)
- promising pairs pairs of sequences that are likely to overlap
 - fast preselection of promising pairs
 - overlaps verification (greatly increases precision)

ACGGGTA
GGGTACT

CTGGAGT TGGAGTCC CTGGAGT CTGAACCG

score 5, overlap 2

score 6, overlap 1

score 1, overlap 0

DNA overlap graph:

- sort sequences in the way that similar sequences are close to each other O(n log n)
- verify which of the neighbouring sequences are really similar using exact sequence comparison

How to sort sequences properly?

<u>k-mer</u> – a substring of k consecutive nucleotides from a sequence

For each sequence the algorithm computes its k-mer characteristic:

- 1) extracts every possible k-mer (k is fixed)
- 2) sorts k-mers descending on their frequencies of occurrence

GAACGAACTGAA

- 1) K=3: 2xAAC, ACG, ACT, CGA, CTG, 3xGAA, TGA
- 2) 3xGAA, 2xAAC, ACG, ACT, CGA, CTG, TGA

Finally, sort all the sequences alphabetically according to their characteristics (similar to a dictionary).

Partial k-mer characteristics:

- a set of short characteristics
 computed for each sequence
- purpose: to detect alsothe pairs with short overlaps

Neighborhood verification by sequence alignment:

- computationally heavy (Needleman-Wunsch)
- no solution on the market
 - not a database scan
 - alignment of selected pairs only
- perfect for GPUs

TTAGCACAGGAAC-CTA

CACAG-AACTCTAGG

shift=4

score=9

<u>Ultra fast implementation on GPU!</u>

NW and dynamic programming (DP):

 data dependencies: left, upper and diagonal elements are needed

$$H[i,j] = \max \begin{cases} H[i-1,j] - G_{penalty} \\ H[i,j-1] - G_{penalty} \\ H[i-1,j-1] + SM(s_1[i], s_2[j]) \end{cases}$$

Key GPU optimizations:

- bitwise compression of sequencing data
 - optimized for nucleotide sequences
- extremely efficient memory access:
 - coalesced access + data prefetch
 - up to 256 cells computed from a single int fetch
 - compute bound
- loop unrolling!
 - DP features nested loops
 - 28 kernels with unrolled loops for various sequence lenghts

- the fastest software in its class worldwide
- up to 89 GCUPS on a single GPU

- high accuracy of graph construction:
 - sensitivity up to 99%
 - precision: ca. 97%
 - pairs with min. overlap of 40% are well detected
 - very good error handling
- ultra fast reads alignment on GPU makes it possible to check more promising pairs in a reasonable time

- custom greegy algorithm visits every node
- visited nodes a sequence of consecutive reads (contig)
- key difficulty repetitive genome regions
- a dedicated algorithm detecting branches
- graph of contigs

Graph of contigs:

useful to perform scaffolding

Contig 2 Contig 1

Contigs dead-ends

G-DNA - whole genome test

	1881 1977 - Advantage (1881 1994 1997 1997 1997 1997 1997 1997 199				
Data set	1				
organism name	Candidatus Microthrix				
	parvicella Bio17-1				
species	bacteria				
genome length	4,202,850 bp				
chromosome $N_{\overline{}}$	1				
reference genome in pieces	yes: 13				
sequencing technology	Illumina GA II				
read length (before trimming)	100 bp				
avg. read length (after trimming)	89.5 bp				
reads № (after trimming)	$2 \times 2,208,789$				
paired-end	yes				
avg. coverage	94				
insert size	435 bp				
σ of insert size	100 bp				

G-DNA - whole genome test

- very high quality of contigs expressed as percentage of identity
- superior contig lengths

assembler	Velvet		SOAPo	lenovo	Celera WGS		SGA		SR-ASM		G-DNA	
number of contigs	430		14260		32	29	6046		9005		300	
aligned 0 times	6	1.40%	49	0.34%	5	1.52%	24	0.40%	364	4.04%	6	2.00%
aligned 1 time	421	97.91%	13186	92.47%	320	97.26%	5454	90.21%	8574	95.21%	291	97.00%
aligned >1 time	3	0.70%	1025	7.19%	4	1.22%	568	9.39%	67	0.74%	3	1.00%
N50	19674		18	1801 17027		6987		63912		23156		
contig length sum	3689879		5253	3873	3518	3044	4475163		6102827		3688731	
10 longest contigs (length and % of identity)	95205	99.38%	17749	99.86%	92091	98.46%	47470	99.67%	225071	95.37%	141105	99,53%
	87349	98.47%	16851	99.79%	81611	99.70%	45539	99.73%	141460	96.89%	89267	99,48%
	84978	99.63%	13492	99.76%	77990	99.79%	43417	99.74%	132035	97.44%	86285	99,53%
	74155	99.59%	12986	99.82%	68811	99.68%	31063	99.71%	131058	98.53%	72635	99,49%
	70808	99.57%	12883	99.76%	66620	99.67%	30890	99.78%	129931	98.29%	69815	99,54%
	68186	99.67%	12629	99.87%	60334	99.73%	29077	99.66%	121798	98.01%	63101	99,60%
	63679	99.60%	11905	99.86%	54458	99.81%	28333	99.76%	111032	97.30%	55712	99,59%
	62306	99.52%	11336	99.51%	54376	98.61%	27836	99.67%	100720	90.78%	52433	99,54%
	62139	99.56%	11311	99.80%	48096	99.78%	27139	99.65%	100517	96.66%	51496	99,56%
	55979	99.61%	10274	99.90%	45601	99.73%	26203	99.78%	92359	80.52%	49005	99,67%

Conclusios

- heavy GPU computations help to construct high quality DNA overlap graphs
- highly accurate graphs + good traversal method = very high quality contigs
- memory efficient implementation
- ready for next-generation sequencing / big data

Contact information

Michał Kierzynka michal.kierzynka@cs.put.poznan.pl http://www.cs.put.poznan.pl/mkierzynka

Please complete the Presenter Evaluation sent to you by email or through the GTC Mobile App. Your feedback is important!