

Real-Time Camera Tracking in the "1st & Ten" System

Louis Gentry and Rand Pendleton

What is "1st & Ten"?

1st & Ten, Line of Scrimmage, and Down and Distance

1st & Ten

- "1st & Ten" is a real-time visual effects system designed to insert virtual graphics in live football broadcasts with proper inscene perspective.
- Invented by Sportvision in 1998 and debuted on ESPN Sunday Night Football that same year.
- Relies on hardware sensors for accuracy.

1st and Ten Demo

Sensor System Workflow

Process for enhancing life video from a locked-down camera.

Sensor System Pros and Cons

Pictured: Assembled, instrumented camera

Pictured: Sportvision instrumentation box

Pros

- Once calibrated, it "just works"
- Works even on snow games
- Minimal tuning required
- Not affected by motion blur

Cons

- Requires fixed camera position
- No reliable hardware-based image stabilization
- Cost of custom electronics
- Must be onsite with the TV production

"1st & Ten" on Movable Cameras?

Pictured: skycam

Pictured: Yellow Line as drawn by the skycam

- Most movable broadcast cameras have prohibitive constraints:
 - Weight
 - Data connectivity
- Use an optical solution where sensors aren't practical
- In 2004, Sportvision pioneered an optical tracking system for enabling "1st & Ten" on football replays.

Legacy Optical System

- Requires no instrumentation/sensors
- Image processing on CPU
- Designed for replays
- Debuted on ESPN Sunday Night Football

Optical System Workflow

Limitations of Legacy Optical System

- Limited CPU computing
- Limited feature search regions
- Greater than desired number of noisy measurements
- Limited to analyzing every other frame
- Often requires manual correction of tracks

How Does Today's GPU Compute Power Help?

- Reduced compute cost
- More compute power
- Better scalability

Legacy Implementation

- Limited to template matching
- Averaged 115 point and 60 line measurements per solve
- Required interpolation of camera solution

New CUDA-Based Optical System

Intel CPU

AJA video capture card

NVIDIA QUADRO graphics card

Supermicro motherboard

Live Optical Tracking Test

Improvements Using the GPU

- More sophisticated feature detection
 - Strong features to track
 - Less matching ambiguity
 - Reduced drift and noise in calibrations

Increased number of high-quality measurements

Improved Detection

Disambiguate features

- Tried industry standard techniques (Harris, SIFT, FAST, etc.)
- Utilized a combination of industry and proprietary techniques

More robust features

- Better differentiation between hash mark corners in close proximity
- Reduced false positives (particularly along yard lines)

Metrics Comparison

Lessons Learned

- Primarily memory bound
 - Had to use creative methods to hide latency
- Adhering to known CUDA optimization guidelines is a must
 - Coalesced memory access
 - Minimizing shared memory bank conflicts
 - Efficient use of shared memory
 - Avoid divergent warps
 - Use pinned memory to reduce CPU/GPU transfer costs

Final Thoughts

- Always more to do
 - Optical solutions are often domain/context specific
 - Often need multiple solutions to cover different camera angles
- Never enough compute
 - Need sophisticated algorithms
 - Real-time requirement adds hard constraints

louisgentry@sportvision.com randpendleton@sportvision.com

Please complete the Presenter Evaluation sent to you by email or through the GTC Mobile App.