

Acceleration of Electromagnetic Scattering from Discrete Bodies of Revolution (DBOR)

Acceleration

Using the Graphics Processing Unit (GPU) to reduce run-time

Electromagnetic Scattering

 Solving a linear system of equations that comes from discretizing the Electric Field Integral Equation (EFIE)

 An object that has K-fold symmetry (discrete rotational symmetry)

Acknowledgements

- Dominic Meiser (Tech-X)
- Scott Kruger (Tech-X)
- Pen Agnew (UVA)
- Alex Saxerud (UVA)
- Brandon Shipman (NAU)
- Stan Posey (NVIDIA)
- Glen MacLachlan (GW)
- Tim Wickberg (GW)

Tech-X

Space physics

 Software development / testing

Research / education

TECH-X

Leidos

FY2014 REVENUES: ~\$6B

National Security Sector

- ~\$4B revenue
- 13,500 employees
- 99% government, <1% commercial
- Critical mission support for intelligence community
- C4ISR R&D and solutions for DoD
- Industry-leading cybersecurity capabilities

Health & Engineering Sector

- ~\$2B revenue
- 9,500 employees
- 63% commercial, 37% government
- Healthcare information technology, electronic health records, and advanced data analytics
- Health and life science / clinical research
- Energy grid and critical infrastructure design and integration

Computational Electromagnetics (CEM)

http://leidos.com/products/software/emtools

- ACAL
- AntFarm
- ▶ BTS
- CASTACK
- CATS
- CrossFlux
- DUCTSCAT
- EMTM
- INSSITE

- McCavity
- McFSS
- McPTD
- MMADTO
- SAF
- SIGLBC
- URBANA
- Xpatch

Motivation

- Evaluate how to invest in new machines
- Continually improve tools (to enable larger, more complex problems)
 - GTC 2010 ... "Acceleration of Asymptotic Computational Electromagnetics Physical Optics Shooting and Bouncing Ray (PO-SBR) using CUDA"
 - GTC 2012 ... "Application of the GPU to a Two-Part Computational Electromagnetic Algorithm"
- Access to resources
 - 1x TK40 card (and interns!)
 - 4x TK40 machine
 - 64x TK20 cluster

Motivation

"next monthly report"

CPU double-precision (complex) out-of-core LU decomposition (10x goal) **250,000 unknowns** weeks

GPU

weekend DBOR

(4x goal)

"tomorrow"

Electromagnetic Scattering

- Unknowns associated with induced surface currents
 - Rao, Wilton, and Glisson (RWG) basis functions
- ► Electric Field Integral Equation (EFIE) → linear system of equations
 - LU decomposition

3D scatterer (N degrees of freedom)

$$[Z][I] = [V]$$

 $[Z] = N \times N$ reactions between all unknowns

$$[I] = N \times 1$$
 unknowns

$$[V] = N \times 1$$
 excitations

(K-fold symmetry)

- Rotationally symmetric objects
 - missile with fins, turbine engine with blades, parabolic reflector antenna with support struts, spiral antenna, ...
- ► EFIE → block-circulant matrices

Discrete Fourier Transform (DFT) reduces single large system of block-circulant matrices into smaller set of independent systems

$$\begin{bmatrix} Z \end{bmatrix}_{m} \begin{bmatrix} I \end{bmatrix}_{m} = \begin{bmatrix} V \end{bmatrix}_{m} \\
 \begin{bmatrix} Z \end{bmatrix}_{m} = \sum_{k=1}^{K} Z^{(k)} e^{+jm(k-1)\frac{2\pi}{K}} & \xrightarrow{N} & \frac{N}{K} \times \frac{N}{K} \\
 [V]_{m} = \sum_{k=1}^{K} V^{(k)} e^{-jm(k-1)\frac{2\pi}{K}} \\
 I^{(k)} = \frac{1}{K} \sum_{m=1}^{K} [I]_{m} e^{+jm(k-1)\frac{2\pi}{K}}$$

- Implemented on GPU with PGI® compiler
- ▶ Fill
 - Standard parallelization (matrix elements → thread processors)
 - Code loop over unknowns vs. surface element
 - DFT operation meant more computation required per matrix element than standard non-DBOR problems
- Factor/Solve
 - Matrix Algebra on GPU and Multicore Architectures (MAGMA)

- In-core implementation
- Metal scatterer (research code)
- Older machine (Dell T3400)
- Fourier modes processed sequentially

Momentous

- Suite of GPU accelerated libraries for large scale method of moment computations
 - Based on patched version of PLAPACK with cuBLAS and custom CUDA®
- LU factorization and forward/backward substitution
 - Distributed, multi-GPU
 - Out-of-core capability
 - Checkpointing
- Cross platform support (Linux[®], Microsoft Windows[®], Apple OS X)

Resources

- parsec computer (Leidos)
 - 1.67 TB drive
 - 4x TK40m gpu
 - 256 GB ram, 16 cores
- colonial one cluster (GW)
 - 32 nodes
 - 250 TB lustre scratch space
 - 2x TK20 gpu / node
 - 128 GB ram, 12 cores / node

http://colonialone.gwu.edu

Results

Factor (90,000 dof)
Double-Precision Complex

Processes	Nodes	GPUs	Time (min)	GFLOPs
16	1	4x TK40	10	3272
24	2	4x TK20	77	418
48	4	8x TK20	55	587
96	8	16x TK20	29	1121
192	16	32x TK20	27	1212
360	30	60x TK20	19	1669

(out-of-core)

Momentous

on

colonial one

Conclusion

- GPU continues to offer significant potential for CEM applications
 - DBOR shifts computation to fill, which parallelizes very nicely
 - Matrix factor and solve can be handled by libraries like MAGMA or Momentous
- Unclear whether production runs are better off on a GPU cluster
 - MAGMA (single node in-core) appears to outperform Momentous
 - MAGMA limited by RAM (up to 125k dof on parsec real world problems need more)
 - Momentous setup time was greater than factor time
- Next steps
 - Continue to run more benchmarks
 - Extend DBOR matrix-fill to support multiple GPUs
 - Compare performance to existing production codes (wall-time)

Contact

- Eric Dunn (eric.a.dunn@leidos.com)
- Dominic Meiser (dmeiser@txcorp.com)
- Scott Kruger (kruger@txcorp.com)

