
URI VERNER

ACCURATE FLOATING-POINT
SUMMATION IN CUB

Summer intern

OUTLINE
Who needs accurate floating-point summation?!

Round-off error: source and recovery

A new method for accurate FP summation on a GPU

Added as a function to the open-source CUB library

How fast is it?

Download link

NORMAL FLOATING-POINT SUMMATION

1.000000 x100 -3.333333 x10-1 -2.467579 x10-19 … INPUT

0.74999988 0.75000000 0.75000024 RESULT

INACCURATE RESULTS

NON-DETERMINISTIC RESULTS!

ACCURATE FP SUMMATION

0.74999999082897… EXACT SUM

… INPUT

ACCURATE SUM AS FLOATING-POINT 0.7500000

Our method computes both!

1.000000 x100 -3.333333 x10-1 -2.467579 x10-19 …

EXISTING WORK: EXBLAS (OPENCL)
By Iakymchuk, Collange, et al.

Uses Kulisch accumulators (very wide fixed-precision variables)

Our method uses a different approach

WHERE IS THIS USEFUL?

High Performance Computing applications

An example coming next

Cross-platform applications

Debugging: bit-exact results for floating point!

if (d_result != d_reference)

 error(“wrong answer!”);

EXAMPLE: LATTICE QCD COMPUTATIONS
QCD - Quantum Chromodynamics

Describes the strong force that binds quarks and gluons

GPU accelerated QUDA library

 lattice.github.io/quda

Accurate summation can potentially improve

 convergence and reduce computation time

CONVERGENCE OF ITERATIVE ALGORITHM

stagnation

BiCGstab Algorithm: Dirac equation solver

convergence

ROUND-OFF ERROR: SOURCE AND
RECOVERY

IEEE-754 FLOATING-POINT STANDARD

𝑥 = (−1)𝑠 × 2𝐸𝑋𝑃 × 1. 𝐷𝑏

S EXP SIGNIFICANT DIGITS

Special cases:

 +/-NaN, +/-Inf, +/-0, subnormals

single-precision double-precision

Format width 32 bits 64 bits

Exponent range -126 .. 127 (8 bits) -1022 .. 1023 (11 bits)

Significant digits 23 (+1 implicit) 52 (+1 implicit)

32/64 bits

SOURCE OF NON-REPRODUCIBILITY

Non-associative operations

Order of operations matters:

1,000,000 + (0.4 + 0.4) -> 1,000,001

(1,000,000 + 0.4) + 0.4 -> 1,000,000

different implementations return different sum values

SOURCE OF ACCURACY LOSS

Round-off error in compute operations

Computer sum: 1234.567 + 1.234567

 accurate actual

 1235.801567 1235.802

bigger difference in magnitude => more digits lost

TWO-SUM ALGORITHM (KNUTH)

[s,r] = TwoSum(a,b)

s <- a+b

z <- s-b

r <- (b-(s-z)) + (a-z)

6 FP operations

TwoSum(a,b)

Round(a+b) round-off error

FAST TWO-SUM (DEKKER)

[s,r] = FastTwoSum(a,b)

s <- a+b

z <- s-a

r <- b-z

3 FP operations

Requires EXP(a) ≥ EXP(b)

FastTwoSum(a,b)

Round(a+b) round-off error

ERROR-FREE PARALLEL SUMMATION

INTEGRATION INTO CUB LIBRARY
CUB: Parallel primitives in CUDA

Includes parallel primitives like Sum, Scan, Sort, etc.

Performance tuned for every NVIDIA GPU architecture

Aim: use Reduction with TwoSum() for an error-free sum

Reduction

REDUCTION+TwoSum: PROBLEM #1
The output of TwoSum is two FPs, instead of one!

1. Convert

2. Define

(x1,x2)=2Sum(s1,s2)
(y1,y2)=2Sum(r1,r2)
x2=x2+y1
(x1,x2)=fast(x1,x2)
x2=x2+y2
(s3,r3)=fast(x1,x2)

+ = + =

Parallel reduction TwoSum

x (x, 0.0)

(s1,r1) (s2,r2) + (s3,r3)

1 1 1 1 1 2

REDUCTION+TwoSum: PROBLEM #2

Multiple values with similar exponents can be added
without overflow

Limited accuracy

E.g.: 10100 + 100 + 10-100

DIVIDE THE EXPONENT RANGE INTO BINS

(bin id)

0 1023 010101010101010101

𝐟𝐥𝐨𝐨𝐫 𝟏𝟎𝟐𝟑 /
𝟐𝟎𝟒𝟖

𝟖
= 𝟑

Number of EXP values: 2048 (double)

0 1 2 3 4 5 6 7

s r s r s r s r s r s r s r s r

3

add to bin #3

Suppose we add n numbers to a bin: 𝑎𝑖 = 2𝑒𝑖 ∙ 𝑚𝑖, where 𝑒𝑙 ≤ 𝑒𝑖 < 𝑒ℎ.

Our budget is 106 digits

106 ≥ 53 + 𝑙𝑜𝑔2𝑛 + 𝑒ℎ − 𝑒𝑙

For 𝑛 = 220, 𝑒ℎ − 𝑒𝑙 = 32 different exponents!

1. 00000000000000000001 1 000000000000000000000

106 binary digits

𝑎𝑙 = 1 00000000000111111111

𝑎ℎ =1 11111111111111111111 000000000

𝑒ℎ − 𝑒𝑙

HOW MANY EXPONENT VALUES PER BIN?

ALGORITHM: ERROR-FREE SUMMATION ON
GPUS

EACH THREAD DOES THE FOLLOWING

radix-sort by binidx

s r

63

s r

1

s r s r s r

…

s r s r s r

0

| 𝟐−𝟖𝟎 | 𝟐𝟎 | 𝟐𝟑𝟏 | 𝟐𝟔𝟎 | 𝟐𝟓𝟎 | 𝟐−𝟗𝟎 | 𝟐𝟏 | 𝟐𝟎 |

EXPONENT=11bit

binidx=6bit bin=5bit

| 𝟐−𝟖𝟎 | 𝟐−𝟗𝟎 | 𝟐𝟑𝟏 | 𝟐𝟎 | 𝟐𝟏 | 𝟐𝟎 | 𝟐𝟔𝟎 | 𝟐𝟓𝟎 |

reduce-by-key binidx

update smem bins

SHARED MEMORY

read input

FINAL SUMMATION PHASE

Bin 63 . . . Bin 0

r s r s r s r s r s r s r s r s Block 0

r s r s r s r s r s r s r s r s Block 1

r s r s r s r s r s r s r s r s …

r2 r s r2 r s r2 r s r2 r s r2 r s r2 r s r2 r s r2 r s

+

Result

SUM

x X

(serial phase)

ALGORITHM SUMMARY
1. For each thread block:

Repeat:

Read input tile in registers

Radix-sort items by bin ID in registers (+ temp buffer in shared)

Compute sum for each bin with Reduce-by-key in registers (+ temp buffer in shared)

Update bins in shared memory in shared memory

Save bins to global memory in global memory

2. Merge bins with the same bin ID

3. “Normalize” bins by adding them from low to high

4. Rounded result is in the highest word

PERFORMANCE (K40)

5.2

4.7

0

1

2

3

4

5

6

G
It

e
m

s/
se

c

Number of items

Const

Random

5 Billion

Items per

second

Normal summation is ~6 times faster

DOWNLOAD AND CONTRIBUTE

Get it at:

https://github.com/uriv/accusum

Usage instructions in README.ACCUSUM

It’s open source. Use it, improve it!

https://github.com/uriv/accusum

THANK YOU

BACKUP

