ACCURATE FLOATING-POINT A
SUMMATION IN CUB

URI VERNER

f NVIDIA.
Institute o .
: Summer intern

OUTLINE

> Who needs accurate floating-point summation?!
> Round-off error: source and recovery

> A new method for accurate FP summation on a GPU

Added as a function to the open-source CUB library

> How fast is it?

NORMAL FLOATING-POINT SUMMATION

NeuT (S (S
RESULT omomo omomom oromas

INACCURATE RESULTS
NON-DETERMINISTIC RESULTS!

ACCURATE FP SUMMATION

ACCURATE SUM AS FLOATING-POINT 07500000

Our method computes both!

EXISTING WORK: EXBLAS (OPENCL)

» By lakymchuk, Collange, et al.
> Uses Kulisch accumulators (very wide fixed-precision variables)
> Our method uses a different approach

4

[I
| 00000000 I 00000000 00000000 | 00000000 fixed-point

¥ atomic INT64 add with carry propagation

BIG fixed-point accumulator (4288 bits)

WHERE IS THIS USEFUL?

> High Performance Computing applications
> An example coming next

- Cross-platform applications

- Debugging: bit-exact results for floating point!

1T (d_result != d_reference)
error(“wrong answer!”);

EXAMPLE: LATTICE QCD COMPUTATIONS

> QCD - Quantum Chromodynamics
- Describes the strong force that binds quarks and gluons

> GPU accelerated QUDA library
lattice.github.io/quda kol
- Accurate summation can potentially improve i
convergence and reduce computation time

CONVERGENCE OF ITERATIVE ALGORITHM

BiCGstab Algorithm: Dirac equation solver

convergence stagnation

; ;1’
% e N"!’N b:

ROUND-OFF ERROR: SOURCE AND
RECOVERY

IEEE-754 FLOATING-POINT STANDARD

32/64 bits

< »
<«

x = (—1)° x 287 x 1.D,

Format width 32 bits 64 bits
Exponent range -126 .. 127 (8 bits) -1022 .. 1023 (11 bits)

Significant digits 23 (+1 implicit) 52 (+1 implicit)

> Special cases:
+/-NaN, +/-Inf, +/-0, subnormals

SOURCE OF NON-REPRODUCIBILITY

Non-associative operations

Order of operations matters:
1,000,000 + (0.4 + 0.4) ->|1,000,001|

(1,000,000 + 0.4) + 0.4 ->{1,000,000]

different implementations return different sum values

SOURCE OF ACCURACY LOSS

Round-off error in compute operations

Computer sum: | 1234.567 |+|1.234567 |

accurate actual
1235.801567 | 1235.802 |

bigger difference 1n magnitude => more digits lost

TWO-SUM ALGORITHM (KNUTH)

TwoSum(a,b)

N

Round(a+b) round-off error

6 FP operations

[s,r] = TwoSum(a,b)
s <- a+b
Zz<-s-b
r <- (b-(s-z)) + (a-z)

FAST TWO-SUM (DEKKER)

FastTwoSum(a,b)

N

Round(a+b) round-off error

3 FP operations

Requires EXP(a) = EXP(b)

[s,r] = FastTwoSum(a,b)
S <- a+b
Z <- s-a
r <- b-z

ERROR-FREE PARALLEL SUMMATION

INTEGRATION INTO CUB LIBRARY

> CUB: Parallel primitives in CUDA
> Includes parallel primitives like Sum, Scan, Sort, etc.
» Performance tuned for every NVIDIA GPU architecture

Aim: use Reduction with TwoSum() for an error-free sum

REDUCTION+TwoSum: PROBLEM #1

The output of TwoSum is two FPs, instead of one!

Eis+ £ - E1
|

||
Parallel reduction

1. Convert x |—

2. Define (s1,r1)

12+ 12 = —_2 —
J |]
1
TwoSum
(x, 0.0)
+ (s2,r2) — (s3,r3)

(x1,x2)=2Sum(sl,s2)
(yl,y2)=2Sum(rl,r2)
X2=x2+y1
(x1,x2)=fast(x1,x2)
X2=X2+y2

(s3,r3)=fast(x1,x2)

A

REDUCTION+TwoSum: PROBLEM #2

>~ Limited accuracy
- E.g.: 10100 + 100 + 10-100 |

| |
— =

' Multiple values with similar exponents can be added
| without overflow

® DIVIDE THE EXPONENT RANGE INTO BINS

3

4

5

S

r

S

r

S

r

Iadd to bin #3

3| (bin id)

=
0 1023 010101010101010101

2048
floor| 1023 / e 3

HOW MANY EXPONENT VALUES PER BIN?

106 binary digits

» Suppose we add n numbers to a bin: a; = 2° - m;, where ¢; < ¢; < e,.

- Our budget is 106 digits ~100000000000111111111
> 106 = 53 + [log,n] + (e, — ¢e;) An :1_

- For n = 229, (e, — e;) = 32 different exponents! en €

ALGORITHM: ERROR-FREE SUMMATION ON
GPUS

EACH THREAD DOES THE FOLLOWING

-> read input | 2780 | 20 | 231 | 260] 250 | 2799 | 21 | 20 |
radix-sort by binidx | 2780 | 2799 | 231 | 20 | 27 | 20| 2%0 | 2%0 |
- O O o O
reduce-by-key binidx O o O

— update smem bins

S r S r S r S r S r S r S r S

0 1
SHARED MEMORY

FINAL SUMMATION PHASE

Bin 63
S r S r S r S r S r S r S r

Block O
Block 1

r S r S r S r S r S r S r
S r S r S r S r S r S r
serphase) s s s rs s s oo s T

Result

ALGORITHM SUMMARY

1. For each thread block:

Repeat:
Read input tile in registers
Radix-sort items by bin ID in registers (+ temp buffer in shared)

Compute sum for each bin with Reduce-by-key in registers (+ temp buffer in shared)
Update bins in shared memory in shared memory

Save bins to global memory in global memory
2. Merge bins with the same bin ID
3. “Normalize” bins by adding them from low to high
4. Rounded result is in the highest word

PERFORMANCE (K40)

N

5 Billion

ltems per
second

Gltems/sec
w

N

= . N SRR
Normal summation is ~6 times faster 2 AN A~ O A b:-\§
L I SR

P NN

®

Number of items

m Const

® Random

DOWNLOAD AND CONTRIBUTE

> Get it at:
https://github.com/uriv/accusum

» Usage instructions in README.ACCUSUM

> It’s open source. Use it, improve it!

https://github.com/uriv/accusum

THANK YOU

#GTC15 ¥ f B

v

BACKUP

