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OUTLINE 
Who needs accurate floating-point summation?! 

 

Round-off error: source and recovery 

 

A new method for accurate FP summation on a GPU 

Added as a function to the open-source CUB library 

 

How fast is it? 

 

Download link 



NORMAL FLOATING-POINT SUMMATION 

1.000000 x100 -3.333333 x10-1 -2.467579 x10-19 … INPUT 

0.74999988 0.75000000 0.75000024 RESULT 

INACCURATE RESULTS 

NON-DETERMINISTIC RESULTS! 



ACCURATE FP SUMMATION 

0.74999999082897… EXACT SUM 

… INPUT 

ACCURATE SUM AS FLOATING-POINT 0.7500000 

Our method computes both! 

1.000000 x100 -3.333333 x10-1 -2.467579 x10-19 … 



EXISTING WORK: EXBLAS (OPENCL) 
By Iakymchuk, Collange, et al.  

Uses Kulisch accumulators (very wide fixed-precision variables) 

Our method uses a different approach 



WHERE IS THIS USEFUL? 

High Performance Computing applications 

An example coming next 

 

Cross-platform applications 

 

Debugging: bit-exact results for floating point! 

if (d_result != d_reference) 

 error(“wrong answer!”);  



EXAMPLE: LATTICE QCD COMPUTATIONS 
QCD - Quantum Chromodynamics 

Describes the strong force that binds quarks and gluons 

 

GPU accelerated QUDA library  

 lattice.github.io/quda 

Accurate summation can potentially improve  

    convergence and reduce computation time 



CONVERGENCE OF ITERATIVE ALGORITHM 

 

stagnation 

BiCGstab Algorithm: Dirac equation solver 

convergence 



ROUND-OFF ERROR: SOURCE AND 
RECOVERY 



IEEE-754 FLOATING-POINT STANDARD 

𝑥 = (−1)𝑠 ×  2𝐸𝑋𝑃  ×  1. 𝐷𝑏  

S EXP SIGNIFICANT DIGITS 

Special cases:  

   +/-NaN, +/-Inf, +/-0, subnormals 

single-precision double-precision 

Format width 32 bits 64 bits 

Exponent range -126 .. 127 (8 bits) -1022 .. 1023 (11 bits) 

Significant digits 23 (+1 implicit) 52 (+1 implicit) 

32/64 bits 



SOURCE OF NON-REPRODUCIBILITY 

Non-associative operations 

 

Order of operations matters: 

1,000,000 + (0.4 + 0.4) -> 1,000,001 

 

(1,000,000 + 0.4) + 0.4 -> 1,000,000 

 

different implementations return different sum values 



SOURCE OF ACCURACY LOSS 

Round-off error in compute operations 

 

Computer sum:  1234.567 + 1.234567 

  

      accurate  actual 

    1235.801567  1235.802 

 

bigger difference in magnitude => more digits lost 



TWO-SUM ALGORITHM (KNUTH) 

[s,r] = TwoSum(a,b) 

s <- a+b 

z <- s-b 

r <- (b-(s-z)) + (a-z) 

6 FP operations 

TwoSum(a,b) 

Round(a+b)          round-off error 



FAST TWO-SUM (DEKKER) 

[s,r] = FastTwoSum(a,b) 

s <- a+b 

z <- s-a 

r <- b-z 

3 FP operations 

Requires EXP(a) ≥ EXP(b) 

 

FastTwoSum(a,b) 

Round(a+b)          round-off error 



ERROR-FREE PARALLEL SUMMATION 



INTEGRATION INTO CUB LIBRARY 
CUB: Parallel primitives in CUDA 

Includes parallel primitives like Sum, Scan, Sort, etc.  

Performance tuned for every NVIDIA GPU architecture 

Aim: use Reduction with TwoSum() for an error-free sum 

Reduction 



REDUCTION+TwoSum: PROBLEM #1 
The output of TwoSum is two FPs, instead of one! 

1. Convert 

2. Define 

(x1,x2)=2Sum(s1,s2) 
(y1,y2)=2Sum(r1,r2) 
x2=x2+y1 
(x1,x2)=fast(x1,x2) 
x2=x2+y2 
(s3,r3)=fast(x1,x2) 

+ = + = 

Parallel reduction TwoSum 

x (x, 0.0) 

(s1,r1) (s2,r2) + (s3,r3) 

1 1 1 1 1 2 



REDUCTION+TwoSum: PROBLEM #2 

Multiple values with similar exponents can be added 
without overflow 

Limited accuracy 

E.g.: 10100 + 100 + 10-100 



DIVIDE THE EXPONENT RANGE INTO BINS 

(bin id) 

0 1023 010101010101010101 

𝐟𝐥𝐨𝐨𝐫 𝟏𝟎𝟐𝟑 / 
𝟐𝟎𝟒𝟖

𝟖
= 𝟑 

Number of EXP values: 2048 (double) 

0 1 2 3 4 5 6 7 

s r s r s r s r s r s r s r s r 

3 

add to bin #3 



Suppose we add n numbers to a bin: 𝑎𝑖 = 2𝑒𝑖 ∙ 𝑚𝑖, where 𝑒𝑙 ≤ 𝑒𝑖 < 𝑒ℎ. 

Our budget is 106 digits 

106 ≥ 53 + 𝑙𝑜𝑔2𝑛 + 𝑒ℎ − 𝑒𝑙  

For 𝑛 = 220, 𝑒ℎ − 𝑒𝑙 = 32 different exponents! 

1. 00000000000000000001 1 000000000000000000000 

106 binary digits 

𝑎𝑙 = 1 00000000000111111111 

𝑎ℎ =1 11111111111111111111 000000000 

𝑒ℎ − 𝑒𝑙 

HOW MANY EXPONENT VALUES PER BIN? 



ALGORITHM: ERROR-FREE SUMMATION ON 
GPUS 



EACH THREAD DOES THE FOLLOWING 

radix-sort by binidx 

s r 

63 

s r 

1 

s r s r s r 

… 

s r s r s r 

0 

| 𝟐−𝟖𝟎 | 𝟐𝟎 | 𝟐𝟑𝟏 | 𝟐𝟔𝟎 | 𝟐𝟓𝟎 | 𝟐−𝟗𝟎 | 𝟐𝟏 | 𝟐𝟎 |  

EXPONENT=11bit 

binidx=6bit bin=5bit 

| 𝟐−𝟖𝟎 | 𝟐−𝟗𝟎 | 𝟐𝟑𝟏 | 𝟐𝟎 | 𝟐𝟏 | 𝟐𝟎 | 𝟐𝟔𝟎 | 𝟐𝟓𝟎 |  

reduce-by-key binidx 

update smem bins 

SHARED MEMORY 

read input 



FINAL SUMMATION PHASE 

Bin 63 . . . Bin 0 

r s r s r s r s r s r s r s r s Block 0 

r s r s r s r s r s r s r s r s Block 1 

r s r s r s r s r s r s r s r s … 

r2 r s r2 r s r2 r s r2 r s r2 r s r2 r s r2 r s r2 r s 

+ 

Result 

SUM 

x x x x x x x x x x x x x x x x x x x x x x x X 

(serial phase) 



ALGORITHM SUMMARY 
1. For each thread block: 

Repeat: 

Read input tile        in registers 

Radix-sort items by bin ID     in registers (+ temp buffer in shared) 

Compute sum for each bin with Reduce-by-key in registers (+ temp buffer in shared) 

Update bins in shared memory    in shared memory 

Save bins to global memory     in global memory 

2. Merge bins with the same bin ID 

3. “Normalize” bins by adding them from low to high 

4. Rounded result is in the highest word 



PERFORMANCE (K40) 
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Normal summation is ~6 times faster 



DOWNLOAD AND CONTRIBUTE 

Get it at: 

https://github.com/uriv/accusum 
 

Usage instructions in README.ACCUSUM 

 

It’s open source. Use it, improve it! 

https://github.com/uriv/accusum


THANK YOU 



BACKUP 
 


