GPU TECHNOLOGY CONFERENCE

PLANNING FOR DENSITY AND PERFORMANCE IN VDI WITH NVIDIA GRID

JASON SOUTHERN

SENIOR SOLUTIONS ARCHITECT FOR NVIDIA GRID

AGENDA

- Recap on how vGPU works
- Planning for Performance
 - Design considerations
 - Benchmarking
- Optimizing for Density

Nvidia vGPU

recap

SHARING THE GPU

vGPU from NVIDIA

VIRTUAL GPU RESOURCE SHARING

Frame buffer

Fixed allocationAllocated at VM startup

GPU Engines

Timeshared among VMs, like multiple contexts on single OS

Dedicated secure data channels between VM & GPU

Building for Performance

WHAT AFFECTS OVERALL PERFORMANCE

HOW DO WE CHECK GPU UTILIZATION?

- Nvidia-SMI

 - CLI Realtime & Looping
- Perfmon
 - GUI
 - Realtime & logging
- ▶ GPU-Z
 - GUI
 - Realtime & Log to File
- Process Explorer
 Per process information on utilisation
- ▶ GPUShark
 - Basic GUI
 - Realtime
- Lakeside Systrack / LWL Stratusphere Detailed historical reporting

MONITORING PASSTHROUGH VS VGPU

😨 TechPowerUp GPU-Z	X		
Graphics Card Sensors	Valid	ation	(6)
GPU Core Clock	•	744.7 MHz	
GPU Memory Clock	•	1248.7 MHz	
GPU Temperature	•	45.0 ℃	_
Memory Used	•	192 MB	_
GPU Load	•	0 %	
Memory Controller Load	•	0 %	
Video Engine Load	•	0 %	
Power Consumption	•	37.9 % TDP	
VDDC	•	1.0000 V	-

Continue refreshing this screen while GPU-Z is in the background

NVIDIA GRID K2

Close

TechPowerUp GPU-Z	0.7.6			x
Graphics Card Sensors	Validatio	on		(Ö)
GPU Core Clock	•	324.0 MHz		L
GPU Memory Clock	•	162.0 MHz		L
Memory Used	+	299 MB		_
GPU Load	•	0 %	1 - 1 - 1	

Measured against 100% of the GPU

Log to file
 Continue refreshing this screen while GPU-Z is in the background

Close

NVIDIA GRID K240Q

BE CAREFUL THOUGH...

ASSESSMENT TOOLS

- Long term assessment data allows you to plan for the peak loads.
- ▶ GPU usage is often in bursts, plan for the peak not the mean.
- Use assessment tools that track GPU info e.g.
 - Lakeside Systrack 7
 - Liquidware Labs Stratusphere FIT

VCPU'S

- Allow at least one for the Encoder (HDX or PCoIP)
- Allow at least one for the OS
- The rest are for the application(s)
 - How many did the workstations have?
 - How demanding is the application itself?

SYSTEM MEMORY

Second System RAM & 4GB GPU Memory = Bottleneck!

Memory overcommit / ballooning etc is not recommended.

PASSTHROUGH OR VGPU

When do I really need to use Passthrough?

- > CUDA
- Computational Usage GPGPU
- PhysX
- Troubleshooting vGPU issues Driver simplification - Kx80Q

CUDA - WHAT IS IT

NVIDIA's parallel computing architecture that enables dramatic increases in computing performance by harnessing the power of the GPU

Applications & their features that use CUDA

http://www.nvidia.com/object/gpu-accelerated-applications.html

Benchmarking

BENCHMARKING

- Remember you're benchmarking the entire VM, not just the GPU
- All of these have an impact on the result.
 - GPU
 - CPU
 - RAM
 - DISK
- Don't overlook User Experience testing.
 - Benchmarks are just numbers, user acceptance is king.

BENCHMARKING TOOLS

CADalyst
 For AutoCAD workloads
 http://www.cadalyst.com/benchmark-test

 3D Mark 11
 Generic DirectX benchmarking http://www.futuremark.com/benchmarks/3dmark11

SPECViewperf 11

- OPENGL benchmarking tool
- Has industry & application specific modules available
- Version 12 has issues with virtualisation at present..

http://www.spec.org/gwpg/gpc.static/vp11info.html

Frame Rate Limiter & VSYNC

FRAME RATE LIMITER

- For vGPU we implement a frame Rate Limiter (FRL)
- Used in vGPU to balance performance across multiple vGPUs executing on the same physical GPU.
- ▶ FRL imposes a max frames-per-second that vGPU will render at in a VM.
 - Q profiles render at 60fps max
 - non Q profiles are limited to 45fps max

VSYNC

- Setting is modified by applications or manually performed via the NVIDIA Control Panel
- Default setting allows the application to set the VSYNC policy
- Setting the VSYNC to "on" will synchronize the frame rate to 60Hz / 60 FPS for both pass-through and vGPU
- Setting the VSYNC to "off" will allow the GPU to render as many frames as possible
 - ▶ In vGPU profiles, this setting does not override the FRL

VSYNC EFFECT ON VGPU - SINGLE VM

FRL EFFECT ON VGPU - SINGLE VM

Optimizing for Density

Am I using the right profile?

COMPARING QUADRO TO VGPU

GPU TECHNOLOGY VGPU Profiles In Current Driver

Board	vGPU	vGPUs	vGPUs	Per virtual GPU		
	type	per board	per GPU	FB	Heads	Max Res
GRID K1	GRID K120Q	32	8	512M	2	2560x1600
	GRID K140Q	16	4	1G	2	2560x1600
	GRID K160Q	8	2	2G	4	2560x1600
	GRID K180Q	4	1	4G	4	2560x1600
Board	vGPU type	vGPUs per board	vGPUs per	Per virtual GPU		
			GPU	FB	Heads	Max Res
GRID K2	GRID K220Q	16	8	512M	2	2560x1600
	GRID K240Q	8	4	1G	2	2560x1600
	GRID K260Q	4	2	2G	4	2560x1600
	GRID K280Q	2	1	4G	4	2560x1600

What does the Q mean?

LET'S CONSIDER A SCENARIO.

- An organisation has trialled K1's in passthrough on dual displays
 Performance is perfect, but they want better density from their server purchase if possible.
 - -2 K1 cards in a chassis = 8 Users in pass-through.
- Is there a way to get more users on the server with the same or better performance?

IT DEPENDS ON THE PEAK UTILIZATION

90% of the GPU in use vGPU on K1 not an option

Framebuffer

1 GB Framebuffer in use 3 GB going to waste.

VGPU OPTIONS ON A K2 CARD.

Card Physic GPUs	Physical	cal Virtual GPU	J Use Case	Frame Buffer (MB)	Virtual Display Heads	Maximum Resolution	Maximum vGPUs	
	GPUS						per GPU	per Board
		GRID K260Q NC	Density imp	orovemen	t - 44VM's	s per card1600		
GRID K2	2	GRID K240Q	Entry-Level Designer	1024	2	2560x1600	4	8
	2 Su 1	fficient Guara	inteed GPU o	capacity b	out tõo lit	ttle Framebuffer ·	< 1Gb	

K1 – 192 Cores per GPU K2 – 1536 Cores per GPU

So, let's assume that K220Q profiles have similar minimum GPU resources to K1 in pass-through

THE GOLDILOCKS PROFILE?

K1 Usage GPU

POTENTIAL SOLUTION

- K2 with 240Q profile would
 - Double the user density in the chassis to 16
 - Increased GPU performance
 - CAPEX reduction due to less chassis' needed.

Remember, this is just the start...

One Last thing...

Impact of Remoting Protocols

Fraps

e

0

0

9

REDTurbineDemo

? **x**

31% 315MB

2 ms

47C 50.037W

Real-time viewport rendering

No user interaction in benchmark mode, otherwise press 'h' for help

....

THANK YOU

JOIN THE CONVERSATION #GTC15 **f** in