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What is DNA 

• Hereditary material in 

humans and almost all other 

living organisms  

• Comprises of four chemical 

base pairs: (A,T), (C,G) in 

double helix structure 

• Sequence of these base 

pairs determines how an 

organism develops, survives 

and reproduce 

 

Guanine 

Thymine 

Cytosine 

Adenine 
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Why sequence DNA ? 
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Tumor DNA: in blood 

• Identifying tumor by 

sequencing the free 

floating DNA in blood for 

mutations 

• If mutations in ctDNA  

tumor somewhere in the 

body 

For Research Use Only. Not for use in  diagnostic procedures. 
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Main Frame  Mini Computer  Personal Computer 

CE/Sanger Sequencing Next-Gen Sequencing Ion Semiconductor Sequencing 

Requirements for Success 

Affordable, Scalable Technologies  

Simple, End-to-End Workflows  

Strong User Community and Reference Base 

Benchtop High Throughput Sequencing Accessible to All Labs 
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Ion ProtonTM sequencer 
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Sensor Plate 

Silicon Substrate 

Drain Source Bulk 

dNTP 

To column  

receiver 

∆ pH 

∆ Q 

∆ V 

Sensing Layer 

H+ 

Rothberg J.M.  et al Nature doi:10.1038/nature10242  

Transistor as a pH meter 

Compute Intensive signal 

processing 
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Unprecedented Scaling 

Ion 316™ Ion 314 Ion 318™ 

Ion PI™  

Chips 

600M 

1.2M 6.1M 11M 

165M 

660 million sensors anticipated of 

being recorded at 15 FPS for 5 

seconds for each of 300 nucleotide 

flows 

 21 TB (~2 TB compressed) data in 

less than 3 hours. ` 

The content provided herein may relate to products that have not been officially released and is subject to change without notice. 

450M 

Ion PII™ 

660M 
750M 
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Ion Chip Scalability 

PITM, 1.3um 

165M wells 

PIITM, 0.5um 

660M wells 

3-series, 3um 

11M wells 

The content provided herein may relate to products that have not been officially released and is subject to change without notice 
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Ion PII™ Chip 

Contrast to the Ion PI™ Chip: 

• 4x as many wells and transistors 

is expected to enable much 

higher throughput 

• Expected to offer twice the data 

rate to maximize data analysis 

rates and minimize analysis 

times 

• Anticipating higher signal to 

noise to maximize quality of 

signal output 

The content provided herein may relate to products that have not been officially released and is subject to change without notice. 



11 

Anticipated data rate from the PIITM Chip 

HD Movie streams 

  36000 movies 

Latest generation Cisco router 

10 to100 Gbps 

1G Ethernet 

120 cables 
Latest generation CMOS camera 

                  5.6  Gbps 

Ion PIITM Chip 

  660 M wells 

   120 Gbps 

The content provided herein may relate to products that have not been officially released and is subject to change without notice. 

 Netflix 
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Ion PIITM Chip  
Expected to be Functional and Deliver Promising Data 

>300M aligned reads 115 base mode >30G Total Bases 

Target 200-300M reads @ 100bp  

Human Genome Fragment Library 

The content provided herein may relate to products that have not been officially released and is subject to change without notice. 
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Ion PITM Chip -  Microwell Innovations 
Push read length to 400 bases and output to 30Gb 

~ 30 Gb Total Bases ~ 400 Base Mode 99% Accuracy 

Combining 3 PITM chips enables 30X whole human 

genome 

The content provided herein may relate to products that have not been officially released and is subject to change without notice. 
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30X Whole Human Genome on Three Ion PITM Chips 

~30X mean coverage 

 

1X coverage 99.6% 

SNP:MAF>0.2 SNPs 

Total 3,621,628 

Het/Hom ratio 1.693 

Ts/Tv ratio 2.06 

% in(chr1) 

dbSNP 

97.4% 

The content provided herein may relate to products that have not been officially released and is subject to change without notice. 
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Data Processing Pipeline 

Data 

acquisition 

and 

compression 

in FPGA 

 
Signal 

Processing 

BaseCalling 

and 

Alignment to 

reference 

genome 

 

2 TB 200 GB 

    21 TB 

(PIITM chip) 
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How to process data at the source ? 

 Big data on ProtonTM  Sequencer 

 

 Cloud/Cluster not an option 

 

 Dual 8-core Intel® Xeon® Sandy 

Bridge 

 

 Dual Altera® Stratix® V  

 

 NVIDIA® Tesla® K20 

 

 11 TB (SSD and HDD) 
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GPU to the rescue  

• Removed main hotspot in signal processing pipeline 

• Speedups of more than 250x over a CPU core! 

0 20 40 60 80 100 120 140 160

CPU

GPU

time in s 

bead find

CPU processing
first 20 flows

per block CPU
processing after
flow 20

time spent in
fitting

… 

… 
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GPU’s Impact 

• Multiple sequencing runs a day possible 

• Swift pace of Research and Development 

• Accelerated product innovation  

with GPU 

CPU only 

On Instrument Analysis Time with and without GPU 
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Signal Processing Signal Processing 
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Signal Processing Flow 

Reading flow 

data 

Writing signal 

values 

Raw Data 

Processing 

Post Fit 

Processing 

Parameter 

Estimation 

unique to each 

well (LM fitting) 

Regional 

Parameter 

Estimation 

(Common to all 

wells) 
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Mathematical model 

• Sophisticated model 

• Background correction 

• Incorporation 

• Buffering 

• Regional Parameters 

• Enzyme kinetics, nucleotide 

rise, diffusion etc. 

• Well Parameters 

• Hydrogen ions generated, 

buffering, DNA copies etc. 

Decay in H+ 

Incorporation  
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Parameter Estimation 

• Rich data fitting on first 20 flows 

• Custom Levenberg-Marquardt algorithm 

• Multiple parameters are estimated 

• Requires a full matrix solve like Cholesky decomposition 

• Required for each well 

 

• A two parameter fit is required in rest of the flows 

 

• Generates signal value corresponding to hydrogen ions 

generated in each flow 
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Levenberg Marquardt (LM) Algorithm 

• Least squares curve fitting where sum of squared residuals 

between observed and predicted data is minimized 

                                 

    where  

            S: sum of squared residuals between observed         

                and predicted data 

            β: set of model parameters  

            y, x: observed data 

• Essentially Gauss Newton (GN) algorithm with a damping 

factor λ tuned in every solve iteration to progress in the 

direction of gradient descent 

S(b) =
2

[yi- f (xi,b)]i=1

m
å
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LM algorithm cont’d 

• For our application 

• Minimize the residual between raw data and signal value 

obtained from the mathematical model for each well 

• Provides numerical solution for the parameters governing 

the model 

• Iterative algorithm executed repeatedly till there is no 

appreciable change in parameters 

• Convergence in reasonable time and iterations depends on 

the initial guess for parameters 
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GPU Acceleration GPU Acceleration 
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Current Execution Model 

• Based on Original CPU implementation: Process Level 

• 96 blocks 

• depending on hardware 4 to 6 

processes in parallel 

• work on available data during 

experiment 

 
*Heat-map and timing from a Proton P1TM with Nvidia C2075 GPU 
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BkgModel Worker BkgModel Worker BkgModel Worker BkgModel Worker BkgModel Worker 
BkgModel Worker Thread 

ImgLoader ImgLoader ImgLoader Raw Data Loader 

Thread 

CPU Queue 

Gen Traces 

1 

36 

RegionFit 
PostFit 

Xtalk/Clonal 

6 

ImgLoader ImgLoader ImgLoader 1.well writer 

accumulate 

traces for  

20 flows 

1 

sync 

Single Flow 

Fit 
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frames 

flows (20) 

copy 

… 

Current Execution Model 

• Based on Original CPU implementation: Thread Level 
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Current Implementation 

• Stream based to hide PCIe transfer 

 

• Resources needed for stream execution are pre-allocated and 
obtained from a resource pool. 

 

• If resources to create a Stream Execution Unit (SEU) are available 
the Stream Manager will try to poll a new job from a job queue. 

 

• The Stream Manager can drive multiple SEUs which can be of 
different types. 

 

• Theoretically up to 16 SEUs can be spawned in one Stream 
Manager if enough resources are available 
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• ~400 MB GPU  / 150MB Host memory per stream 

• no room for persistent data (36 regions) 

• huge allocation and copy overhead 

• data transpose overhead 

• varying bead count and frames per region, 

reallocation and slowdown in absolute worst case.  

• synchronization steps 
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ImgLoader ImgLoader ImgLoader Raw Data Loader 

Thread 

CPU Queue 

Gen Traces 

1 

36 

RegionFit 
PostFit 

Xtalk/Clonal 

GPU Queue 

6 

ImgLoader ImgLoader ImgLoader 1.well writer 

GPU  

Worker 

StreamManager 
SEU 

StreamEU 

GPU 

transp. Input 

SingleFlowFit 

transp. Output 

accumulate 

traces for  

20 flows 

36 

1 

sync 

  page locked memory 

… 

frames 

flows (20) 

b
e
a
d
s
 

Current Pipeline 
 
after 20 flows 
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GPU Code Optimizations  

• Merging smaller kernels into fat kernels 

• No kernel launch overheads 

• Removes lot of redundant global memory reads and writes 

• Invariant code motion 

• Instruction reordering to allow for better caching 

• Loop unrolling 

• Reduction in integer operation for address calculations 

• Reduction in register pressure 

• Occupancy was register limited 

• Did a sweep over kernel launch bounds to arrive at optimal value 
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GPU Memory Optimizations 

• Global memory access optimization 

• Data transform from AoS to SoA. 

• Data reorganization to allow for vec4 reads 

• Use of shared memory to store some heavily accessed elements 

• Padded buffers to allow for more efficient 128byte segment reads 

• “Excessive” use of constant memory 

• Optimization for L1 cache 

 

• needs to be revisited for every new architecture 

• e.g. Fermi to Kepler:  

 no more L1 for global r/w  __ldg(),  

 changes in shared memory per thread.  

 new L1/Shm config 
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Why are further optimizations needed? 

• Current pipeline optimized for PITM signal processing 

• Utilizes GPU (more or less) efficiently during bkgmodel fitting 

• Generating empty and bead traces a bottleneck  

• Big chunk of CPU time spent in these computations 

• Mostly memory bound and a natural step to be performed on GPU as a 

precursor to fitting 

• Raw data processing is another big compute hog 

• This pipeline will enable it to be easily streamlined in the new flow 

• Many unnecessary data transformations and memcopies 

• Complex execution model 

• All above steps will take 4x more time with PIITM 

• No filtering so pure 4x increase in time 
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Why are further optimizations needed? 

Wall clock time and GPU utilization for K20c and K40 w. boost 
(Proton P1 experiment run with 500 flows)  
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Signal Processing Flow 

Reading flow 

data 

Writing signal 

values 

Raw Data 

Processing 

Post Fit 

Processing 

Parameter 

Estimation 

unique to each 

well (LM fitting) 

Regional 

Parameter 

Estimation 

(Common to all 

wells) 
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Current Optimization Work 

• Expand scope of GPU implementation 

• Some algorithm tweaks 

• Modifications in intermediate data layout  

• Removed need for addition copies and transposes 

• Changes in spatial and temporal data subdivision 

• Use of Nvidia MPS to hide PCIe transfers 
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Data Layout 

• New Layout 
• Maintain layout of raw data 

• Use mask on GPU instead of extracting  
relevant data from raw data 

• Keep all the data in planes so neighboring 
threads always access consecutive data 
elements 

• Fixed data layout allows for in-place 
recompression and  
other operations 

• Easier resource management 

• More data to work on for GPU 

• instead of 20x now 36x region size 

• Region size does no longer limit 
GPU performance  

 

 

 

Mask  

data/traces 

params 
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GPU Worker 

ImgLoader ImgLoader ImgLoader Raw Data Loader 

Thread 

ImgLoader ImgLoader ImgLoader 1.well writer 

GPU 

Gen Traces 

RegionFit 

SingleFlowFit 

Init Persistent  

Data 

first GPU flow? 

Xtalk 

ClonalFilter 

ClonalFilter Flow 

 GPU memory 

  host memory 

c
o
p
y
 

• Per block fixed amount ~270 MB GPU memory  

• Almost no additional host memory 

• Persistent data only copied/generated once on 

device, no additional transposes. 

• No host side copy overhead (use of MPS to hide 

PCIe) 

• Fixed max block size, no need for re-allocation 

• No synchronization steps 

 

Optimized 
after 20 flows 
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optimize pipeline performance 

Wall clock time and GPU utilization for K20c and K40 w. boost 
(Proton P1 experiment run with 500 flows)  
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optimize pipeline performance for 300 flow PIITM run 
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optimized pipeline 25% 

faster than current 

implementation. 
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NVIDIA MPS 

• Multiple overlapping contexts on 

one device 

 

• concurrent PCIe copies and 

kernel execution 

 

• Huge reduction in code 

complexity  no more streams 
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MPS performance 

MPS issues 

 

• occasional slowdown 

(overhead?) 

 

• undefined state after a 

process encountered 

an exception/error 
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Timing for Proton P1 run with 500 flows 

K20 K40 with boost
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Optimization Summary 

• P1TM/P2TM block level signal processing 
• Concept of bkgmodel regions internal to the GPU 

• Easy to experiment with different region sizes 

• Regions can talk to each other. 

• Streamlined flow from raw data processing to signal 
processing 

• Sequential execution of the pipeline steps 

• Final output to be written to 1.wells 

• Fewer data copies, reduced memory footprint for P1TM 

• Freed up CPU resources 

• Reduced context switches on the GPU 

• Better utilization of PCIe bandwidth 
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Expanding the Scope  

Data 

acquisition 

and 

compression 

in FPGA 

 
Signal 

Processing 

BaseCalling 

and 

Alignment to 

reference 

genome 

 

2 TB 200 GB 

    21 TB 

 (PIITM chip) 

The content provided herein may relate to products that have not been officially released and is subject to change without notice. 
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GPU-based Mapping 

• Aligners considered 

• TMAP 

• Mapper from Ion Torrent developed in-house 

• Dual 8-core Intel® Xeon® Sandy Bridge 

• nvBowtie 

• Re-engineered version of bowtie2 from NVIDIA 

• NVIDIA® Tesla® K40 

• Dataset 

• Ampliseq Exome from Ion Torrent 
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nvBowtie: Speed and Quality 

• Speed 

• Index construction (using H.sapiens genome assembly v.39) 

• 14X speedup  

• Mapping (45M reads) 

• 7.1X speedup 

• Quality 

• Mapping Concordance 

• 100% on unique locations 

• 51% overall (Seems to be a bug with the most recent version of 

nvBowtie. Actively investigating with NVIDIA) 

Thanks to Denis Kaznadzey for evaluating nvBowtie and generating timing  

and performance results 
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Results Conclusion 
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Comparison GPU generations 
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Algorithm Speedup over a Single CPU Core 

2x 
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Conclusion and Future Work 

• Breach the legacy code wall. 

• CUDA quickly speeds up bottlenecks until your legacy code 

prevents you from scaling. At that point severe refactoring might be 

the only solution. 

• Expand the scope 

• Other pipeline components need more attention, e.g. Alignment 

• Well known algorithm Smith waterman for detailed alignments 

• NVBIO from NVIDIA is the preferred solution 

• More work to do to tackle the PIITM data challenge 

• Exploit Kepler architecture to its maximum potential 

• Explore potential of Maxwell GPUs. preliminary test are promising 
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For Research Use Only. Not for use in diagnostic procedures. 
© 2015 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of 

Thermo Fisher Scientific and its subsidiaries unless otherwise specified.  

NVIDIA and Tesla are trademarks of Nvidia Corporation. Intel and Xeon are trademarks of 

Intel Corporation. Altera and Stratix are trademarks of Altera Corporation 
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GPU Acceleration Appendix 
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LM algorithm 

• Need to solve the following equation for δ 

                                       

 where 

             J: Jacobian matrix  

             δ: Increment vector to be added to parameter vector β 

             y: vector of observed values at (x0 , . . . , xn)  

             f: vector of function values calculated from the model 

                for given vector of x and parameter vector β 

             λ: damping parameter to steer the movement in the direction  

                of decreasing gradient  

JTJ + ldiag(JTJ)( )d = JT y- f (b)( )
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LM algorithm cont’d 

• Run an outer loop on some maximum number of 

iterations 

• Exit if no appreciable change in parameter value from 

previous to current iteration 

• Run an inner loop  

• Worse case loop count depends on max or min value of 

λ 

• Increase λ if residuals increase compared to previous 

outer iteration 

• Decrease λ if residual decrease compared to previous 

outer iteration  
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LM implementation on GPU 

• LM for each well is done by one thread on GPU 

 

• Millions of wells  

• Embarrassingly parallel problem 

• High on compute 

• Several iterations required to obtain a solution with a reasonable 

tolerance 

 

• Thread exits once numerical solution is obtained for the 

parameters 
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λ-iteration 

 

outer loop iteration 

idle time 

 

return 

threads within same warp 

Bottlenecks of GPU implementation of LM 

Divergence among GPU threads in a warp 

• Each well is sequencing different DNA 

fragment 

• Need different number of iterations 

• Different number of iterations of increasing 

or decreasing λ for each iteration 

• Towards the end of the algorithm execution, 

only few threads are active in a warp 

• Scarce resources on GPU doesn’t allow LM 

kernels from two different jobs to overlap 
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Switch to Gauss Newton Algorithm 

• Same as LM algorithm without damping 

parameter λ to be tuned in every iteration 

• Converges faster if initial guess is in the 

vicinity of the solution 

• Mitigated the divergence problem caused 

by LM to a great extent 

• No λ tuning iterations are involved 

• Reduced code and complexity 

• Limit maximum iterations to be 

performed in worst case scenario 
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Iterations until finished 
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Execution Model 

• Stream based execution allows for 

overlap of 

• Kernel execution  

• PCIe transfers 

• host side data reorganization 

• CPU pre and post processing 

 

• Queue system for heterogeneous 

execution 

• Balances execution of different tasks 

between CPU and GPU 


