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Video Object Tracking

U Real-time tracking of objects in video is an important problem in various domains such as
» Robotics
» Defense
» Security
» Immersive applications

O Many studies in the literature are based on short term tracking which often fails if the object is:
» Occluded
» Disappears from the field of view
» Changes its appearance rapidly
» Goes through a large displacement between consecutive frames.
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Long-term Tracking

Tracking-Learning-Detection

d Track the object in real-time
U The object location is expected to be provided by the tracker in most cases.

d Learn its appearance
U The predicted location of the object is used by P-N experts in the learning component.

O Detect when it reappears after an occlusion or disappearance
U when the detector has higher confidence than the tracker, the object is assumed to be at the
location estimated by the detector and the tracker is reinitialized with this result.
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Long-term Tracking

Motivations for Optimization

O Increase the resolutions for which the algorithm can run in real-time,

4 Allow running multiple instances of the algorithm to support multiple object
tracking,

4 Allow running the algorithm at higher accuracy.
U Tuning the algorithm parameters for higher tracking accuracy requires higher computation
power,
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Computational Cost

A BBOX From
Scale-Level;
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A BBOX From
Scale-Level;;

Detector needs to check 30.000
Bounding Boxes even in a
320x240 frame!




Test Platform

Operating System Windows 7 x64
CPU Intel i7 4770K 3.5 GHz,

4 Physical Cores, Hyper Threading Factor is 2
GPU Tesla K40c, Compute Capability 3.5

15 Streaming Multiprocessors (SM)
192 Cores per SM (total of 2880 cores)
2 Async. Copy Engine, Hyper-Q Enabled

RAM 32 GB DDR3
Serial Computer Expansion Bus PCle 2.1
CUDA Toolkit 6.0
CUDA Driver Version 6.0
CUDA Run time Version 6.0
OpenCV Version 2.4.9

OpenMP Version 2.0
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Analysis for various video resolutions

Time per call (ms)

Time for whole sequence (ms)

Component 480x270 | 960x540 | 1920x1080| 480x270 | 960x540 | 1920x1080
Tracking

LK Optical Flow 1.100 4.280 17.520 509 1982 8112

Normalized Cross Corr. 0.620 0.630 0.770 287 292 357
Learning

Pattern Generation 0.010 0.020 0.080 32 65 258

Random Forest Update 0.440 1.200 1.890 141 386 608

Patch Warping 0.080 0.230 1.270 326 938 5180

BB Overlap 0.020 0.060 0.270 35 104 467
Detection

Total Recall 5.930 20.400 62.500 2752 9466 29000

Integral Image 0.271 1.100 4.560 126 510 2116

Image Blurring 1.685 6.509 23.649 782 3021 10974
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Analysis for 1920x1080 video

T =

0 10000 20000 30000 40000 50000 60000

TLD

Total Time in ms

M Total Recall Computation MW Image Blurring

® LK Optical Flow Calculation MW Patch Warping

M Integral Image Computation ® Random Forest Update

W BB Overlap Computation B Normalized Cross Correlation
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Optimization Strategy

1 Heterogeneous implementation

Q Serial parts are run asynchronously on the CPU

1 The most computationally costly parts are parallelized on the GPU
O Apply stream compaction
1 Design the data structures to allow coalesced access

1 Use shared memory whenever suitable.

O Load balancing - this is achieved by the proposed grouping of the data.
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Implementation: Tracking

U Lucas-Kanade Optical Flow

O Pyramidal Lucas-Kanade is used to handle large motion

d Open-CV’'s GPU Module which has a large community support has been
adopted




Implementation: Learning

d Patch Warping is the most computationally expensive part.

U The other parts do not take significant processing time as they involve
calculation for a limited number of BBs and learning is invoked intermittently. As
such, implementation of these parts on GPU were considered infeasible.

1 Processing these parts on the CPU while processing patch warping on the GPU
necessitates moving large amounts of data (i.e. warped patches) between CPU
and GPU.

1 As a result, we have decided to keep the learning component purely on CPU.
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Implementation: Detection
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Implementation: Detection
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Load Balancing for Patch Variance Calculation

1 Ensure chunks to have similar number of
BBs to be processed.

1 Exploitation of spatial locality of BBs is
also important.
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Stream Compaction

d Patches having low variance (marked with -1) need not to be transferred to the CP!

d Stream compaction is performed by calculating the shift amounts by prefix-sum
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Results

#40,Posterior 0.82; fpa: 84.18, #nhumwindows:66875, Learning
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Experimental Results
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Discussion

O The main bottleneck is the data transfers between the CPU and GPU memory spaces.

O A further analysis of the framework reveals that approximately 45% of total recall calculation time
is spent on RFI part; and approximately 78% of the RFI Calculation’s time is spent in moving the
calculated RFIs to the host side.

O If this data transfer could have been eliminated, a theoretical speed-up bound of 13.13x at
1920x1080 resolution would be obtained.

O This theoretical analysis shows the potential impact of expected memory bandwidth
enhancements and speed-up of data transfers between CPU and GPUs in the next generation
architectures.
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Questions
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H-TLD library code repository
https://github.com/iliTheFallen/nhtld

Please complete the Presenter Evaluation sent to
you by email or through the GTC Mobile App.
Your feedback is important!

For further enquiries:
Dr. Alptekin Temizel
http://www.metu.edu.tr/~atemizel/
atemizel@metu.edu.tr
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