



Tracking Objects Better, Faster, Longer

Assoc. Prof. Dr. Alptekin Temizel atemizel@metu.edu.tr
Graduate School of Informatics, METU

18 March 2015 GPU Technology Conference

### Video Object Tracking

- ☐ Real-time tracking of objects in video is an important problem in various domains such as
  - > Robotics
  - > Defense
  - > Security
  - Immersive applications
- ☐ Many studies in the literature are based on short term tracking which often fails if the object is:
  - Occluded
  - Disappears from the field of view
  - Changes its appearance rapidly
  - > Goes through a large displacement between consecutive frames.



#### Long-term Tracking

# Tracking-Learning-Detection

- ☐ Track the object in real-time
  - ☐ The object location is expected to be provided by the tracker in most cases.
- ☐ Learn its appearance
  - ☐ The predicted location of the object is used by P-N experts in the learning component.
- □ **Detect** when it reappears after an occlusion or disappearance
  - □ when the detector has higher confidence than the tracker, the object is assumed to be at the location estimated by the detector and the tracker is reinitialized with this result.



# **Motivations for Optimization**

- ☐ Increase the resolutions for which the algorithm can run in real-time,
- ☐ Allow running multiple instances of the algorithm to support multiple object tracking,
- ☐ Allow running the algorithm at higher accuracy.
  - ☐ Tuning the algorithm parameters for higher tracking accuracy requires higher computation power,



# Computational Cost



Detector needs to check 30.000 Bounding Boxes even in a 320x240 frame!



# Test Platform

| Operating System              | Windows 7 x64                                 |
|-------------------------------|-----------------------------------------------|
| CPU                           | Intel i7 4770K 3.5 GHz,                       |
|                               | 4 Physical Cores, Hyper Threading Factor is 2 |
| GPU                           | Tesla K40c, Compute Capability 3.5            |
|                               | 15 Streaming Multiprocessors (SM)             |
|                               | 192 Cores per SM (total of 2880 cores)        |
|                               | 2 Async. Copy Engine, Hyper-Q Enabled         |
| RAM                           | 32 GB DDR3                                    |
| Serial Computer Expansion Bus | PCle 2.1                                      |
| CUDA Toolkit                  | 6.0                                           |
| CUDA Driver Version           | 6.0                                           |
| CUDA Run time Version         | 6.0                                           |
| OpenCV Version                | 2.4.9                                         |
| OpenMP Version                | 2.0                                           |



# Analysis for various video resolutions

| Component              | Time per call (ms) |         |           | Time for whole sequence (ms) |         |           |  |  |
|------------------------|--------------------|---------|-----------|------------------------------|---------|-----------|--|--|
| Component              | 480x270            | 960x540 | 1920x1080 | 480x270                      | 960x540 | 1920x1080 |  |  |
| Tracking               |                    |         |           |                              |         |           |  |  |
| LK Optical Flow        | 1.100              | 4.280   | 17.520    | 509                          | 1982    | 8112      |  |  |
| Normalized Cross Corr. | 0.620              | 0.630   | 0.770     | 287                          | 292     | 357       |  |  |
| Learning               |                    |         |           |                              |         |           |  |  |
| Pattern Generation     | 0.010              | 0.020   | 0.080     | 32                           | 65      | 258       |  |  |
| Random Forest Update   | 0.440              | 1.200   | 1.890     | 141                          | 386     | 608       |  |  |
| Patch Warping          | 0.080              | 0.230   | 1.270     | 326                          | 938     | 5180      |  |  |
| BB Overlap             | 0.020              | 0.060   | 0.270     | 35                           | 104     | 467       |  |  |
| Detection              |                    |         |           |                              |         |           |  |  |
| Total Recall           | 5.930              | 20.400  | 62.500    | 2752                         | 9466    | 29000     |  |  |
| Integral Image         | 0.271              | 1.100   | 4.560     | 126                          | 510     | 2116      |  |  |
| Image Blurring         | 1.685              | 6.509   | 23.649    | 782                          | 3021    | 10974     |  |  |



# Analysis for 1920x1080 video





#### Optimization Strategy

- ☐ Heterogeneous implementation
  - □ Serial parts are run asynchronously on the CPU
  - ☐ The most computationally costly parts are parallelized on the GPU
- ☐ Apply stream compaction
- ☐ Design the data structures to allow coalesced access
- ☐ Use shared memory whenever suitable.
- ☐ Load balancing this is achieved by the proposed grouping of the data.



Implementation: Tracking

☐ Lucas-Kanade Optical Flow

☐ Pyramidal Lucas-Kanade is used to handle large motion

Open-CV's GPU Module which has a large community support has been adopted



#### Implementation: Learning

- ☐ Patch Warping is the most computationally expensive part.
- ☐ The other parts do not take significant processing time as they involve calculation for a limited number of BBs and learning is invoked intermittently. As such, implementation of these parts on GPU were considered infeasible.
- □ Processing these parts on the CPU while processing patch warping on the GPU necessitates moving large amounts of data (i.e. warped patches) between CPU and GPU.
- ☐ As a result, we have decided to keep the learning component purely on CPU.



# Implementation: Detection



## Implementation: Detection



## Load Balancing for Patch Variance Calculation

- ☐ Ensure chunks to have similar number of BBs to be processed.
- ☐ Exploitation of spatial locality of BBs is also important.





#### Stream Compaction

- □ Patches having low variance (marked with -1) need not to be transferred to the CP
- ☐ Stream compaction is performed by calculating the shift amounts by prefix-sum



#### Results





## **Experimental Results**





|    | •    | •      |
|----|------|--------|
| IJ | 1SC1 | assion |

- ☐ The main bottleneck is the data transfers between the CPU and GPU memory spaces.
- ☐ A further analysis of the framework reveals that approximately 45% of total recall calculation time is spent on RFI part; and approximately 78% of the RFI Calculation's time is spent in moving the calculated RFIs to the host side.
- ☐ If this data transfer could have been eliminated, a theoretical speed-up bound of 13.13x at 1920x1080 resolution would be obtained.
- ☐ This theoretical analysis shows the potential impact of expected memory bandwidth enhancements and speed-up of data transfers between CPU and GPUs in the next generation architectures.



#### Questions

# H-TLD library code repository <a href="https://github.com/iliTheFallen/htld">https://github.com/iliTheFallen/htld</a>

Please complete the Presenter Evaluation sent to you by email or through the GTC Mobile App.

Your feedback is important!

For further enquiries: Dr. Alptekin Temizel

http://www.metu.edu.tr/~atemizel/ atemizel@metu.edu.tr

