
Tracking Objects Better, Faster, Longer

Assoc. Prof. Dr. Alptekin Temizel

atemizel@metu.edu.tr

Graduate School of Informatics, METU

18 March 2015

GPU Technology Conference

Tracking Objects Better, Faster, Longer

Video Object Tracking

 Real-time tracking of objects in video is an important problem in various domains such as

 Robotics

 Defense

 Security

 Immersive applications

 Many studies in the literature are based on short term tracking which often fails if the object is:

 Occluded

 Disappears from the field of view

 Changes its appearance rapidly

 Goes through a large displacement between consecutive frames.

Tracking Objects Better, Faster, Longer

Tracking-Learning-Detection

 Track the object in real-time

 The object location is expected to be provided by the tracker in most cases.

 Learn its appearance
 The predicted location of the object is used by P-N experts in the learning component.

 Detect when it reappears after an occlusion or disappearance
 when the detector has higher confidence than the tracker, the object is assumed to be at the

location estimated by the detector and the tracker is reinitialized with this result.

Long-term Tracking

Tracking Objects Better, Faster, Longer

Motivations for Optimization

 Increase the resolutions for which the algorithm can run in real-time,

 Allow running multiple instances of the algorithm to support multiple object

tracking,

 Allow running the algorithm at higher accuracy.
 Tuning the algorithm parameters for higher tracking accuracy requires higher computation

power,

Long-term Tracking

Tracking Objects Better, Faster, Longer

Detector needs to check 30.000

Bounding Boxes even in a

320x240 frame!

Computational Cost

Tracking Objects Better, Faster, Longer

Test Platform

Tracking Objects Better, Faster, Longer

Analysis for various video resolutions

Tracking Objects Better, Faster, Longer

Analysis for 1920x1080 video

Tracking Objects Better, Faster, Longer

 Heterogeneous implementation

 Serial parts are run asynchronously on the CPU

 The most computationally costly parts are parallelized on the GPU

 Apply stream compaction

 Design the data structures to allow coalesced access

 Use shared memory whenever suitable.

 Load balancing - this is achieved by the proposed grouping of the data.

Optimization Strategy

Tracking Objects Better, Faster, Longer

 Lucas-Kanade Optical Flow

 Pyramidal Lucas-Kanade is used to handle large motion

 Open-CV’s GPU Module which has a large community support has been

adopted

Implementation: Tracking

Tracking Objects Better, Faster, Longer

 Patch Warping is the most computationally expensive part.

 The other parts do not take significant processing time as they involve

calculation for a limited number of BBs and learning is invoked intermittently. As

such, implementation of these parts on GPU were considered infeasible.

 Processing these parts on the CPU while processing patch warping on the GPU

necessitates moving large amounts of data (i.e. warped patches) between CPU

and GPU.

 As a result, we have decided to keep the learning component purely on CPU.

Implementation: Learning

Tracking Objects Better, Faster, Longer

Implementation: Detection

Tracking Objects Better, Faster, Longer

Implementation: Detection

Tracking Objects Better, Faster, Longer

C

h
u

n
k 0

C
h

u
n

k 1

C
h

u
n

k 2

Scan Line
Pair 0

Scan Line
Pair 1

Scan Line
Pair 2

Scan Line
Pair 3

Scan Line
Pair 0

Scan Line
Pair 1

Scan Line
Pair 2

Scan Line
Pair 0

Scan Line
Pair 1

Scale
Level0

Scale
Level1

Scale
Level2

Load Balancing for Patch Variance Calculation

 Ensure chunks to have similar number of

BBs to be processed.

 Exploitation of spatial locality of BBs is

also important.

Tracking Objects Better, Faster, Longer

BB0

0

BB1

-1

BB2

-1

BB3

0

BB4

-1

BB5

0

BB6

-1

BB0

0

BB1

-1

BB2

-2

BB3

-2

BB4

-3

BB5

-3

BB6

-4

Stream Compaction

 Patches having low variance (marked with -1) need not to be transferred to the CPU

 Stream compaction is performed by calculating the shift amounts by prefix-sum

Tracking Objects Better, Faster, Longer

Results

Tracking Objects Better, Faster, Longer

480x270

960x540

1920x1080

Experimental Results

Tracking Objects Better, Faster, Longer

 The main bottleneck is the data transfers between the CPU and GPU memory spaces.

 A further analysis of the framework reveals that approximately 45% of total recall calculation time

is spent on RFI part; and approximately 78% of the RFI Calculation’s time is spent in moving the

calculated RFIs to the host side.

 If this data transfer could have been eliminated, a theoretical speed-up bound of 13.13x at

1920x1080 resolution would be obtained.

 This theoretical analysis shows the potential impact of expected memory bandwidth

enhancements and speed-up of data transfers between CPU and GPUs in the next generation

architectures.

Discussion

Tracking Objects Better, Faster, Longer

H-TLD library code repository

https://github.com/iliTheFallen/htld

Questions

Please complete the Presenter Evaluation sent to

you by email or through the GTC Mobile App.

Your feedback is important!

For further enquiries:

Dr. Alptekin Temizel

http://www.metu.edu.tr/~atemizel/

atemizel@metu.edu.tr

https://github.com/iliTheFallen/htld
http://www.metu.edu.tr/~atemizel/
http://www.metu.edu.tr/~atemizel/
mailto:atemizel@metu.edu.tr

