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Motivation 

 Monte Carlo simulation extensively used in financial 
modeling 

–Monte Carlo is a compute-bound problem 

 FPGAs and GPUs are increasingly being used for 
accelerating financial kernels 

– Low power consumption of FPGA a key advantage over 
enterprise-class GPUs (e.g., a K40) 

– Lower price enables building price-competitive clusters 

  Focus of this work: 

– Evaluate exploitation of TK1 for accelerating financial Monte 
Carlo (specifically pricing esoteric options) 

– Compare performance and power consumption  
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Pricing via Monte Carlo Simulation 

  Used for pricing esoteric options 

– no analytic solution, typically 10% to 20% of pricing 

functions in a portfolio 

  Low I/O- High Compute Workload: suitable for 

accelerators such as FPGA and GPUs 

  Focus of this work: Accumulator Forward Options 
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Pricing Function: Accumulator Forward Option 

  Option on a stock with defined “strike” and “barrier” prices 

  At fixed intervals (e.g., each month) 

– seller is obliged to sell at the “strike” price 

– buyer is obliged to buy at the “strike” price 

  No down side limit 

– buyer can loose a lot of money 

 Limited up side 

– contract terminates if price exceeds the “barrier” 

 Must use Monte Carlo approach for pricing 

– no analytic solution 
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Core Computation of the Accumulator Forward Options 

 Stochastic paths (106) of stock prices for 365 days 

• Quasi-random number generation (Sobol) 

• Gaussian distribution (inverse normal) 

• Path generation (Black-Scholes) 

  Compute cash flows (pricing function) for each path 
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Sobol Sequences 

 Low-dispersion, quasi-random numbers 

– uniformly distributed on the interval (0, 1) 

– requires inverse-normal transformation 

 Two parameters- number of samples and number of dimensions 

– 106 samples (paths) in 365 dimensions (days) 

  Faster convergence compared to other techniques 

  Excellent implementations available with very long periods 

– Joe & Kuo (Sequential), basis of CURAND Sobol QRNG 

  Easy to generate 

– exploits bit-vector operations e.g., shift, xor, mask of constants. 
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Black-Scholes Stochastic Model 

 The Black-Scholes model describes the evolution of 

stock’s price through a stochastic differential equation 

(SDE) the expresses the percentage change as 

increments of a Brownian motion 
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SDE Solution  
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Execution Flow of the Monte-Carlo Computation 
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Parallelizing the Monte-Carlo Computation on GPU 
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TK1 Implementation Details 

 Issues impacting TK1 implementation 

– Weak ARM host: need to do everything on the TK1 

– TK1 has low memory bandwidth (peak 9 GB/s) 

•  Minimize device memory accesses  

– TK1 has few physical cores: limit on the threadblock count  

 Core computations on the TK1 (Single-precision calculations) 

– Sobol QRNG generation  

•  Using CURAND Sobol generator versus native implementation 

– Inverse-normal calculations 

– Sum reduction to calculate final result 

•  Uses warp functions to reduce usage of atomicAdd() 
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Implementation of Sobol Generator 

 Sobol generators follow a simple recurrence 

–                                            [Bratley and Fox, Algorithm 659] 

 

where           is called the direction number 

– x(n) computed using Gray code representation of “n” 

•  Gray code(n) = ….. g3g2g1.  

•  Gray code(n) and Gray code (n+1) differ in one bit 

•  x(n) = g1v1       g2v2      .. 

  For generating M samples in N directions, it requires N * 32 

direction numbers (32 integers per dimension) 

  Calculations across dimension completely independent 

  Within a dimension, sample “i” can be calculated directly by solving 

the recurrence  
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Parallelizing Sobol Generator on GPU  

 Sobol parallelization strategy depends on how the overall 

computation is parallelized 

 Current strategy uses path-based parallelization 

– Each thread executes 365 iterations, each for a dimension 

– At every iteration “j” , thread “i” calculates a unique sample of 

index map(i) in dimension “j” 

•  At every iteration “j” each thread operates on the 32 direction 

numbers for the direction “j” 

•  Total data fetched from device memory = 32 * 365 * #thread-block 

 Current CURAND interface can not support this execution pattern 

– Reading pre-computed 365x106 random numbers from TK1’s 

device memory extremely inefficient 
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Per-thread execution of Sobol generator 
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int stride= iterations; /* Stride = #Iterations */ 

int loops = __ffs(stride);  

/* gid is between 0 and #iterations */ 

unsigned int gid = blockID* threads_per_block + iam; 

unsigned int directions[32]; 

unsigned int X=0, mask=0; 

/* Fetch direction vectors for dimension “j” (day “ j”) */ 

unsigned g = gid ^ (gid >> 1); 

/* We want X ^= g_k * v[k], where g_k is one or zero. */ 

for (unsigned int k=0; k < loops -1 ; k++){ 

     mask = -(g & 1); 

     X ^= mask & directions[k];  

     g = g >> 1; 

} 

sobolSample_i_j = (float) X * k_2powneg32;  /* i == gid */ 

Modified version of code used in the Sobol QRNG Sample 

Uses Joe and Kuo’s (ACM TOMS 2003) dimension numbers  
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Experiment Evaluation: FPGA Setup 
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Altera  Stratix V connected to Power 8 host 

Implements a 1024-dimension Sobol Generator 

Result aggregation computed on the Power 8 host 
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Experimental Results: 106 Paths and 365 Days 

 TK1: 12.28 sec @ 3 Watts (ARM Host) 

– 0.013 sec for 1K Paths 

  FPGA: 0.2 sec @ 9 Watts (Aggregation done on the 
P8 host) 

– TK1 without aggregation takes 12.17 sec 

  Other architectures: 

– K40: 0.053 sec @ 68 Watts (Needs CPU host) 

– x86 (IB): 1 sec, 20 threads 

  Cost Analysis 

–  A TK1 board at least 50x cheaper than enterprise class 
multi-core CPU+accelerator system 

–GPU has smaller NRE ($) than FPGA 
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Experimental Results: TK1 Performance Issues 

 Three expensive components  

– Sobol Calculations: 

•  xor, bit shifts 

•  Coalesced accesses to fetch 32 direction numbers 

– Inverse-normal and Path calculations 

•  Exp, log, FMA operations 

– Result aggregation uses atomicAdd() 

  Number of thread blocks can affect the performance 

– Using 1024 blocks of 128 threads each 

  Overall GPU performance affected by Sobol, Inverse-normal, and 

Path Calculations  

– cost of accessing direction vectors insignificant 
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GPU versus FPGA 

 FPGA was faster than TK1 

somewhat slower than K40 

 FPGA consumes more power than TK1 

less than K40 

 GPU programming easier than FPGA 

more flexible and less NRE compared to FPGA 

 Same code runs on TK1 and K40 
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Conclusions and Future Work 

 Implemented Monte-Carlo Pricing model for 

Accumulator Forward Options on the TK1 

 TK1 performance affected by the computational 

functions (sobol, inverse-normal, pricing) 

– Need to investigate performance optimization 

opportunities  

 Low power GPUs could be very competitive if run on 

enterprise class host 
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