
© 2014 IBM Corporation

Financial Risk Modeling on Low-power Accelerators:

Experimental Performance Evaluation of TK1 with

FPGA

3/17/2015

IBM T. J. Watson Research Center

Rajesh Bordawekar and Daniel Beece

IBM Research

© 2015 IBM Corporation

Outline

 Motivation

 Monte Carlo Option Pricing

– Path Generation

– Accumulator Forward Option

 Parallelization on TK1

 Experimental Evaluation

 Conclusions and Future Work

2 3/17/2015

IBM Research

© 2015 IBM Corporation

Motivation

 Monte Carlo simulation extensively used in financial
modeling

–Monte Carlo is a compute-bound problem

 FPGAs and GPUs are increasingly being used for
accelerating financial kernels

– Low power consumption of FPGA a key advantage over
enterprise-class GPUs (e.g., a K40)

– Lower price enables building price-competitive clusters

 Focus of this work:

– Evaluate exploitation of TK1 for accelerating financial Monte
Carlo (specifically pricing esoteric options)

– Compare performance and power consumption

3 3/17/2015

IBM Research

© 2015 IBM Corporation

Pricing via Monte Carlo Simulation

 Used for pricing esoteric options

– no analytic solution, typically 10% to 20% of pricing

functions in a portfolio

 Low I/O- High Compute Workload: suitable for

accelerators such as FPGA and GPUs

 Focus of this work: Accumulator Forward Options

4 3/17/2015

IBM Research

© 2015 IBM Corporation

Pricing Function: Accumulator Forward Option

 Option on a stock with defined “strike” and “barrier” prices

 At fixed intervals (e.g., each month)

– seller is obliged to sell at the “strike” price

– buyer is obliged to buy at the “strike” price

 No down side limit

– buyer can loose a lot of money

 Limited up side

– contract terminates if price exceeds the “barrier”

 Must use Monte Carlo approach for pricing

– no analytic solution

5 3/17/2015

IBM Research

© 2015 IBM Corporation

Core Computation of the Accumulator Forward Options

 Stochastic paths (106) of stock prices for 365 days

• Quasi-random number generation (Sobol)

• Gaussian distribution (inverse normal)

• Path generation (Black-Scholes)

 Compute cash flows (pricing function) for each path

6 3/17/2015

IBM Research

© 2015 IBM Corporation

Sobol Sequences

 Low-dispersion, quasi-random numbers

– uniformly distributed on the interval (0, 1)

– requires inverse-normal transformation

 Two parameters- number of samples and number of dimensions

– 106 samples (paths) in 365 dimensions (days)

 Faster convergence compared to other techniques

 Excellent implementations available with very long periods

– Joe & Kuo (Sequential), basis of CURAND Sobol QRNG

 Easy to generate

– exploits bit-vector operations e.g., shift, xor, mask of constants.

7 3/17/2015

IBM Research

© 2015 IBM Corporation

Black-Scholes Stochastic Model

 The Black-Scholes model describes the evolution of

stock’s price through a stochastic differential equation

(SDE) the expresses the percentage change as

increments of a Brownian motion

8 3/17/2015

 
 

 tdWdtr
tS

tdS
 

stock price at time “t”

Brownian Motion:

normally distributed random variable

(mean 0, variance “t”)

volatility of the price

drift (mean rate of return)

IBM Research

© 2015 IBM Corporation

SDE Solution

9 3/17/2015

   




















Zttr

eStS
 2

2

1

0

$60.00

$70.00

$80.00

$90.00

$100.00

$110.00

$120.00

$130.00

1 51 101 151 201 251 301 351

Days

P
ri

c
e

stock price at time “t” initial stock price

standard normal random variable

(mean 0, variance 1)

Paths

IBM Research

© 2015 IBM Corporation

Execution Flow of the Monte-Carlo Computation

10 3/17/2015

Uniformly-distributed

Quasi-Random Number Generation

Gaussian Distributed

(Inverse Normal)

Stochastic Path Generation

Black-Scholes

Compute Cash Flows

(Accumulator Forward)

Input

Results

IBM Research

© 2015 IBM Corporation

Parallelizing the Monte-Carlo Computation on GPU

11 3/17/2015

Each thread executes one or more distinct paths.

Individual cash flows aggregated to compute final result

Stochastic

Path

Stochastic

Path

Stochastic

Path

Stochastic

Path

Aggregation

Host

Result

GPU Kernel

Thread 0 Thread N Path-based Parallelization

Paths = 106

Dimensions = 365

IBM Research

© 2015 IBM Corporation

TK1 Implementation Details

 Issues impacting TK1 implementation

– Weak ARM host: need to do everything on the TK1

– TK1 has low memory bandwidth (peak 9 GB/s)

• Minimize device memory accesses

– TK1 has few physical cores: limit on the threadblock count

 Core computations on the TK1 (Single-precision calculations)

– Sobol QRNG generation

• Using CURAND Sobol generator versus native implementation

– Inverse-normal calculations

– Sum reduction to calculate final result

• Uses warp functions to reduce usage of atomicAdd()

12 3/17/2015

IBM Research

© 2015 IBM Corporation

Implementation of Sobol Generator

 Sobol generators follow a simple recurrence

– [Bratley and Fox, Algorithm 659]

where is called the direction number

– x(n) computed using Gray code representation of “n”

• Gray code(n) = ….. g3g2g1.

• Gray code(n) and Gray code (n+1) differ in one bit

• x(n) = g1v1 g2v2 ..

 For generating M samples in N directions, it requires N * 32

direction numbers (32 integers per dimension)

 Calculations across dimension completely independent

 Within a dimension, sample “i” can be calculated directly by solving

the recurrence

13 3/17/2015

     cvnxnx 1

 cv

IBM Research

© 2015 IBM Corporation

Parallelizing Sobol Generator on GPU

 Sobol parallelization strategy depends on how the overall

computation is parallelized

 Current strategy uses path-based parallelization

– Each thread executes 365 iterations, each for a dimension

– At every iteration “j” , thread “i” calculates a unique sample of

index map(i) in dimension “j”

• At every iteration “j” each thread operates on the 32 direction

numbers for the direction “j”

• Total data fetched from device memory = 32 * 365 * #thread-block

 Current CURAND interface can not support this execution pattern

– Reading pre-computed 365x106 random numbers from TK1’s

device memory extremely inefficient

14 3/17/2015

IBM Research

© 2015 IBM Corporation

Per-thread execution of Sobol generator

15 3/17/2015

int stride= iterations; /* Stride = #Iterations */

int loops = __ffs(stride);

/* gid is between 0 and #iterations */

unsigned int gid = blockID* threads_per_block + iam;

unsigned int directions[32];

unsigned int X=0, mask=0;

/* Fetch direction vectors for dimension “j” (day “ j”) */

unsigned g = gid ^ (gid >> 1);

/* We want X ^= g_k * v[k], where g_k is one or zero. */

for (unsigned int k=0; k < loops -1 ; k++){

 mask = -(g & 1);

 X ^= mask & directions[k];

 g = g >> 1;

}

sobolSample_i_j = (float) X * k_2powneg32; /* i == gid */

Modified version of code used in the Sobol QRNG Sample

Uses Joe and Kuo’s (ACM TOMS 2003) dimension numbers

IBM Research

© 2015 IBM Corporation

Experiment Evaluation: FPGA Setup

16 3/17/2015

Altera Stratix V connected to Power 8 host

Implements a 1024-dimension Sobol Generator

Result aggregation computed on the Power 8 host

IBM Research

© 2015 IBM Corporation

Experimental Results: 106 Paths and 365 Days

 TK1: 12.28 sec @ 3 Watts (ARM Host)

– 0.013 sec for 1K Paths

 FPGA: 0.2 sec @ 9 Watts (Aggregation done on the
P8 host)

– TK1 without aggregation takes 12.17 sec

 Other architectures:

– K40: 0.053 sec @ 68 Watts (Needs CPU host)

– x86 (IB): 1 sec, 20 threads

 Cost Analysis

– A TK1 board at least 50x cheaper than enterprise class
multi-core CPU+accelerator system

–GPU has smaller NRE ($) than FPGA

17 3/17/2015

IBM Research

© 2015 IBM Corporation

Experimental Results: TK1 Performance Issues

 Three expensive components

– Sobol Calculations:

• xor, bit shifts

• Coalesced accesses to fetch 32 direction numbers

– Inverse-normal and Path calculations

• Exp, log, FMA operations

– Result aggregation uses atomicAdd()

 Number of thread blocks can affect the performance

– Using 1024 blocks of 128 threads each

 Overall GPU performance affected by Sobol, Inverse-normal, and

Path Calculations

– cost of accessing direction vectors insignificant

18 3/17/2015

IBM Research

© 2015 IBM Corporation

GPU versus FPGA

 FPGA was faster than TK1

somewhat slower than K40

 FPGA consumes more power than TK1

less than K40

 GPU programming easier than FPGA

more flexible and less NRE compared to FPGA

 Same code runs on TK1 and K40

IBM Research

© 2015 IBM Corporation

Conclusions and Future Work

 Implemented Monte-Carlo Pricing model for

Accumulator Forward Options on the TK1

 TK1 performance affected by the computational

functions (sobol, inverse-normal, pricing)

– Need to investigate performance optimization

opportunities

 Low power GPUs could be very competitive if run on

enterprise class host

20 3/17/2015

