

Financial Risk Modeling on Low-power Accelerators: Experimental Performance Evaluation of TK1 with FPGA

Rajesh Bordawekar and Daniel Beece IBM T. J. Watson Research Center

Outline

- Motivation
- Monte Carlo Option Pricing
 - Path Generation
 - Accumulator Forward Option
- Parallelization on TK1
- Experimental Evaluation
- Conclusions and Future Work

© 2015 IBM Corporation

Motivation

- Monte Carlo simulation extensively used in financial modeling
 - -Monte Carlo is a compute-bound problem
- FPGAs and GPUs are increasingly being used for accelerating financial kernels
 - Low power consumption of FPGA a key advantage over enterprise-class GPUs (e.g., a K40)
 - Lower price enables building price-competitive clusters
- Focus of this work:
 - Evaluate exploitation of TK1 for accelerating financial Monte Carlo (specifically pricing esoteric options)
 - Compare performance and power consumption

Pricing via Monte Carlo Simulation

- Used for pricing esoteric options
 - no analytic solution, typically 10% to 20% of pricing functions in a portfolio
- Low I/O- High Compute Workload: suitable for accelerators such as FPGA and GPUs
- Focus of this work: Accumulator Forward Options

Pricing Function: Accumulator Forward Option

- Option on a stock with defined "strike" and "barrier" prices
- At fixed intervals (e.g., each month)
 - seller is obliged to sell at the "strike" price
 - buyer is obliged to buy at the "strike" price
- No down side limit
 - buyer can loose a lot of money
- Limited up side
 - contract terminates if price exceeds the "barrier"
- Must use Monte Carlo approach for pricing
 - no analytic solution

Core Computation of the Accumulator Forward Options

- Stochastic paths (10⁶) of stock prices for 365 days
 - Quasi-random number generation (Sobol)
 - Gaussian distribution (inverse normal)
 - Path generation (Black-Scholes)
- Compute cash flows (pricing function) for each path

Sobol Sequences

- Low-dispersion, quasi-random numbers
 - uniformly distributed on the interval (0, 1)
 - requires inverse-normal transformation
- Two parameters- number of samples and number of dimensions
 - 10⁶ samples (paths) in 365 dimensions (days)
- Faster convergence compared to other techniques
- Excellent implementations available with very long periods
 - Joe & Kuo (Sequential), basis of CURAND Sobol QRNG
- Easy to generate
 - exploits bit-vector operations e.g., shift, xor, mask of constants.

Black-Scholes Stochastic Model

 The Black-Scholes model describes the evolution of stock's price through a stochastic differential equation (SDE) the expresses the percentage change as increments of a Brownian motion

SDE Solution

Execution Flow of the Monte-Carlo Computation

Parallelizing the Monte-Carlo Computation on GPU

Each thread executes one or more distinct paths. Individual cash flows aggregated to compute final result

TK1 Implementation Details

- Issues impacting TK1 implementation
 - Weak ARM host: need to do everything on the TK1
 - TK1 has low memory bandwidth (peak 9 GB/s)
 - Minimize device memory accesses
 - TK1 has few physical cores: limit on the threadblock count
- Core computations on the TK1 (Single-precision calculations)
 - Sobol QRNG generation
 - Using CURAND Sobol generator versus native implementation
 - Inverse-normal calculations
 - Sum reduction to calculate final result
 - Uses warp functions to reduce usage of atomicAdd()

Implementation of Sobol Generator

- Sobol generators follow a simple recurrence
 - $-x(n+1)=x(n)\oplus v(c)$ [Bratley and Fox, Algorithm 659]

where v(c) is called the direction number

- x(n) computed using Gray code representation of "n"
 - Gray code(n) = $g_3g_2g_1$.
 - Gray code(n) and Gray code (n+1) differ in one bit
 - $x(n) = g_1 v_1 \oplus g_2 v_2 \oplus ...$
- For generating M samples in N directions, it requires N * 32 direction numbers (32 integers per dimension)
- Calculations across dimension completely independent
- Within a dimension, sample "i" can be calculated directly by solving the recurrence

© 2015 IBM Corporation

Parallelizing Sobol Generator on GPU

- Sobol parallelization strategy depends on how the overall computation is parallelized
- Current strategy uses path-based parallelization
 - Each thread executes 365 iterations, each for a dimension
 - At every iteration "j", thread "i" calculates a unique sample of index map(i) in dimension "j"
 - At every iteration "j" each thread operates on the 32 direction numbers for the direction "j"
 - Total data fetched from device memory = 32 * 365 * #thread-block
- Current CURAND interface can not support this execution pattern
 - Reading pre-computed 365x10⁶ random numbers from TK1's device memory extremely inefficient

Per-thread execution of Sobol generator

```
int stride= iterations; /* Stride = #Iterations */
int loops = ffs(stride);
/* gid is between 0 and #iterations */
unsigned int gid = blockID* threads per block + iam;
unsigned int directions[32];
unsigned int X=0, mask=0;
/* Fetch direction vectors for dimension "j" (day " j") */
unsigned q = qid ^ (qid >> 1);
/* We want X ^= g k * v[k], where g k is one or zero. */
for (unsigned int k=0; k < loops -1; k++) {
    mask = -(q \& 1);
    X ^= mask & directions[k];
    q = q >> 1;
sobolSample_i_j = (float) X * k_2powneg32; /* i == gid */
```

Modified version of code used in the Sobol QRNG Sample Uses Joe and Kuo's (ACM TOMS 2003) dimension numbers

Experiment Evaluation: FPGA Setup

Altera Stratix V connected to Power 8 host

Implements a 1024-dimension Sobol Generator Result aggregation computed on the Power 8 host

Experimental Results: 10⁶ Paths and 365 Days

- TK1: 12.28 sec @ 3 Watts (ARM Host)
 - 0.013 sec for 1K Paths
- FPGA: 0.2 sec @ 9 Watts (Aggregation done on the P8 host)
 - TK1 without aggregation takes 12.17 sec
- Other architectures:
 - K40: 0.053 sec @ 68 Watts (Needs CPU host)
 - x86 (IB): 1 sec, 20 threads
- Cost Analysis
 - A TK1 board at least 50x cheaper than enterprise class multi-core CPU+accelerator system
 - -GPU has smaller NRE (\$) than FPGA

Experimental Results: TK1 Performance Issues

- Three expensive components
 - Sobol Calculations:
 - xor, bit shifts
 - Coalesced accesses to fetch 32 direction numbers
 - Inverse-normal and Path calculations
 - Exp, log, FMA operations
 - Result aggregation uses atomicAdd()
- Number of thread blocks can affect the performance
 - Using 1024 blocks of 128 threads each
- Overall GPU performance affected by Sobol, Inverse-normal, and Path Calculations
 - cost of accessing direction vectors insignificant

GPU versus FPGA

- FPGA was faster than TK1 somewhat slower than K40
- FPGA consumes more power than TK1 less than K40
- GPU programming easier than FPGA more flexible and less NRE compared to FPGA
- Same code runs on TK1 and K40

Conclusions and Future Work

- Implemented Monte-Carlo Pricing model for Accumulator Forward Options on the TK1
- TK1 performance affected by the computational functions (sobol, inverse-normal, pricing)
 - Need to investigate performance optimization opportunities
- Low power GPUs could be very competitive if run on enterprise class host