"3 OpenPOWER

Towards Fast SQL Query Processing in
DB2 BLU Using GPUs

A Technology Demonstration

Sina Meraji sinamera@ca.ibm.com

B OpenPOWER"™ Summit 2015

San Jose, CA | March 17-19

..||I

mailto:sinamera@ca.ibm.com

-

'
||
|

Please Note

= |[BM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion.

= Information regarding potential future products is intended to outline our general
product direction and it should not be relied on in making a purchasing decision.

= The information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality. Information
about potential future products may not be incorporated into any contract.

= The development, release, and timing of any future features or functionality described
for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks
in a controlled environment. The actual throughput or performance that any user will
experience will vary depending upon many factors, including considerations such as
the amount of multiprogramming in the user’s job stream, the 1/O configuration, the
storage configuration, and the workload processed. Therefore, no assurance can be
given that an individual user will achieve results similar to those stated here.

..||I

Outline

= DB2 BLU Acceleration

= Hardware Acceleration

" Nvidia GPU

= Key Analytic Database Operators
" Qur Acceleration Design

" Live Technology Demonstration

————————————————————————0penPOWER"

1|l|

Next generation database
& Super Fast (query performance)
@ Super Simple (load-and-go)
& Super Small (storage savings)

Seamlessly integrated
& Built seamlessly into DB2

@ Consistent SQL, language interfaces,
administration

& Dramatic simplification

Hardware optimized
& Memory optimized
& CPU-optimized
& |/0 optimized

OpenPOWER'

Risk system injects 1/2 TB
per night from 25 different

source systems.
“Impressive load times.”

= Some queries achieved an T
_I almost 100x speed up with {
- literally no tuning ;

One of the world’s most profitable
and secure rated banks.

6 hours!
Installing BLU

&
g
D

DB2 with BLU Acceleration:
The 7 Big Ideas

Hardware Acceleration

= Use specific hardware to execute software
functions faster

" Popular accelerator technology

* SIMD

= Present in every CPU
* GPUs

= Easy to program
* FPGA

" Hard to program

————————————————————————0penPOWER"

b
[j]
I
il

Nvidia GPU

= NVIDIA Tesla K40

—‘OpenPOWERW

Kepler technology

Peak double precession performance: 1.66
TFLOPs

Peak single precession performance: 5 TFLOPs
High Memory Bandwidth: up to 288 GB/Sec
Memory Size: 12GB

Number of cores: 2880

1|l|

Key Analytic Database Operators

= GROUP BY / Aggregation

SELECT column_name, aggregate_function(column_name)
FROM table_name

WHERE column_name operator value

GROUP BY column_name;

= Join
. SELECT column_name(s)
FROM tablel

JOIN table2
ON tablel.column_name=table2.column_name;

= Sort

SELECT column_name
FROM table_name
ORDER BY column_name;

————————————————————————0penPOWER"

qllll

Hardware Configuration

= POWERS S824L
* 2 sockets, 12 cores per socket, SMT-8, 512GB
* Ubuntu LE 14.04.02 LTS

= GPU:
* 2 NVIDIA Tesla K40

——————————————————#)OpenPOWER"

—=

-

a1

1|l|

Infrastructure

= Adding the support for Nvidia GPU

* CUDA (Compute Unified Device Architecture) is a
parallel computing platform and programming

model created by NVIDIA

= Memory Management
* Pin/Unpin memory
* To run on GPU, threads asks for pinned memory

* This is for fast transfers to/from GPU
= PCI-E Gen3

* Will be improved in 2016 with Nvlink on POWER

OpenPOWER'

1|l|

GPU Scheduler

= Each CPU thread can submit tasks to GPU
scheduler
* Should submit memory requirement on GPU

= The scheduler checks all the GPUs on the
system
* Reserve the memory on the GPU

* (Create a stream
 Return to the CPU thread with GPU number

and stream Id
———————————————————————————0penPOWER"

b
A
[j]
I
|

1|l|

:)g; |..)

Our Acceleration Design

= Use parallel POWERS threads for reading/pre-
processing data

* Transfer data to GPU
"= Have the GPU to process the query
= Transfer the result back to host machine

/,_ﬁ———-...,\ - POWERS Thread (read data) I—I- Memepy |- Input Data
~ POWERS Thread (read data) —PIE =p| Pinned Launch GPU
BLU_TAB1| | . Memory :! kernel
POWERS Thread (read data) Result

—!,OpenPOWERW

..||I

vbrid Design: Use Both POWERS and
GPU for Query Processing

= Decide where to execute the query dynamically at

runtime

Use GPU only

Use CPU only

Use both Number of rows=T1 or
Number of Groups<T2

Use DB2-BLU chain

W

Input from
optimizer

— Moderator

W

T1=Number of rows<T3 _

& Number of Groups=T2

.| Partition data, use both DB2-
BLU and accelerator chains

Number of rows=T3

————————————————————————0penPOWER"

1|l|

GPU Kernels

" Design and develop our own GPU runtime

" Developed fast kernels
e.g. GROUP BY, aggregation

= Use Nvidia CUDA calls

e.g. Atomic operations

= Use Nvidia fast kernels

e.g. sort

——————————————————#)0OpenPOWER"

b
[j]
I
|

..||I

Group By/Aggregation

= What does it do?
= SELECT C1, SUM(C2) FROM simple_table

GROUP BY C1
Simple_Table
Cl C2
9 98
9 92
3 38
9 90
2 22

Cl

SUM(C2)

280

38

43

roup by/Aggregate Operation in GPU

#%I,
oV

 Hash based algorithm

e Use grouping keys and a hash function to insert keys
to a hash table

* Aggregation
— Use Nvidia Atomic CUDA calls for some data types
(INT32, INT64,etc)

— Use Locks for other data types (Double, FixedString, etc)
* Three main steps

— Initialize the hash table
— Grouping/Aggregation in a global hash table

— Scanning the global hash bale to retrieve groups
—i,OpenPOWERW

qllli

Initialization kernel

* Create/initialize the hash table in device memory
* Data needs to be aligned =2 May need Padding

— Grouping key can be anywhere in the hash table based on alignment requirements
* Initialization happens in parallel using parallel GPU threads
e Select SUM(C1), MIN(C2), MAX(C3) from tablel Group by(C1)

— Int64:C1, C2

— Int32:C3

C1(64bit) SUM(C1) MAX(C2)(64bit) MIN(C3)(64bit) = Padding(32 bit)
(64bit)

FFFFFFFFFFFFFFFF 0 -9223372036854775808 2147483647 O

FFFFFFFFFFFFFFFE 0 -9223372036854775808 2147483647 O

FFFFFFFFFFFFFFFF -9223372036854775808 2147483647 O

—‘OpenPOWERW

&
o]
II

1|l|

Hash based Group by/Aggregate

 Group by:
— Parallel threads read keys/payloads from table and insert keys to HT
— Use a hash function to hash keys

—Murmur hashing: Wide keys(larger than 64bit)
—http://en.wikipedia.org/wiki/MurmurHash

—Mod hashing: short keys(smaller than 64bit)
— If collision happens, we check the next empty slot in hash table
* Aggregation:
— If thread key matches an entry in HT we need to perform the

Agg function
i HT(before Aggregation) HT(After Aggregation)
Thread | -mm -M
Key Payload 1 Payload |
ABEGH ABEGH ABFGH 21 1.2

—’,OpenPOWERW

http://en.wikipedia.org/wiki/MurmurHash
http://en.wikipedia.org/wiki/MurmurHash

1|l|

Aggregation

CUDA atomic operations for
— Implemented in hardware(very fast)
— Use for both global and shared memory
— Specific data types(INT32, INT64, etc)

Use AtomicCAS for specific data types e.g. Double
— Specific Agg functions/data types

__device__ double atomicAdd(double* address, double val) {
unsigned long long int* address_as_ull = (unsigned long long int*)address;
unsigned long long int old = *address_as_ull, assumed;
do{
assumed = old;
old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val + longlong_as_double(assumed)));
while(assumed != old);

return __longlong_as_double(old);

}
Check Nvidia docs for more details: http://docs.nvidia.com/cuda/cuda-c-

programming-guide/#atomic-functions
OpenPOWER'

1|l|

@Il
StV

Aggregation(Continued)

* Locks
— For datatypes that are larger than 64 bits
—Decimal, FixedString
— Each thread needs to perform following

—Acquire a lock which is associated with the
corresponding entry in hash table

—Apply the AGG function
—Release the lock
— Costly operation

—————————————————————#0penPOWER"

N

= | o

Hash-Based Group By/Aggregate

SELECT C1, SUM(C2) FROM Simple_Table GROUP BY C1

Simple_Table

Hash Table

|3]jeed

uoneas) LH |3j|esed

Supported Data Types
& AGG functions

SINT8 Cast to SINT32
SINT16 Cast to SINT32
SINT32 AtomicMax
SINT64 AtomicMax
REAL Use AtomicCAS
DOUBLE Use AtomicCAS
DECIMAL Lock

DATE CAST to SINT32
TIME CAST to SINT32
TIMESTAMP(64bit) AtomicMax
FixedString Lock

Cast to SINT32

Cast to SINT32

AtomicMin

AtomicMin

Use AtomicCAS

Use AtomicCAS

Lock

CAST to SINT32

CAST to SINT32

AtomicMIn

Lock

Cast to SINT 32

Cast to SINT32

AtomicAdd
AtomicAdd
AtomicAdd
Use AtomicCAS

Use AtomicADD(2-3
steps)

N/A
N/A
N/A

N/A

AtomicCount

AtomicCount

AtomicCount

AtomicCount

AtomicCount

AtomicCount

AtomicCount

AtomicCount

AtomicCount

AtomicCount

AtomicCount

..||I

————————————————————————0penPOWER"

b
[j]
I
|

1|l|

GPU SORT

 Reduced the amount of data transferred between host
and GPU device
Use Nvidia Fast sort kernel

— Copy key and data to GPU memory, use 4-byte key and 4-byte
payload

— Skip the copying back of the sorted keys

— Skip the copying of payload data into GPU memory on
subsequent sorts to resolve duplicates.

— Use the same data format between DB2 and GPU sort routines

* Handling multiple small sort jobs concurrently in the
GPU
— Handle multiple small sort jobs in the GPU
— Each thread works on sort data range
— there are more sort key bytes to process

————————————————————————0penPOWER"

GPU SORT

* Where GPU performs BEST:

— Up to 750M rows when all sort data fit within GPU device
memory

— Sort on single integer column of size 4-byte or less.
i.e. only one trip to the GPU is required

——————————————————#)OpenPOWER"

1|l|

Acceleration Demonstration

* Accelerating DB2 BLU Query Processing with Nvidia GPUs on POWERS
Servers

* A Hardware/Software Innovation Preview

* Compare query acceleration of DB2 BLU with GPU vs. non- GPU baseline

* Show CPU offload by demonstrating increased multi-user throughput
with DB2 BLU with GPU

Fast + Fast + Fast
GPU Power8 CPU
Thousands of cores Multiple Cores
Computer-intensive tasks Remaining tasks
.
DB2 with BLU

S —] 01131 1011/

1|l|

-~
& BLU Analytic Workload

= A set of Queries from existing BLU Analytic
workloads

* TPC-DS database schema

= Based on a retail database with in-store, on-line, and
catalog sales of merchandise

* 15% of queries use GPU heavily

* 50% of queries use GPU moderately

* 35% of queries do not use GPU at all
= Benchmark Configuration

* 100 GB (raw) Data set

* 10 concurrent users

——————————————————#)OpenPOWER"

Performance Result

Queries Per Hour

4000
3500
3000
2500
2000
1500
1000

500

Using GPU

No GPU

-~2x improvement in workload
throughput

.CPU Offload + improved query
runtimes are the main factors

Simple Non-GPU Q47
Simple Non-GPU Q15
ROLAP Q5

ROLAP Q20

ROLAP Q11

GROUP BY Store Sales

BDI CQ1l
B Avg CPU Total Duration

B Avg GPU Total Duration

GPU vs CPU

-Most individual queries improve in end-to-end
run time

..||I

————————————————————————0penPOWER"

..||I

GPU Utilization

1.2
1
The DB2 BLU GPU demo technology §os
will attempt to balance GPU operations S o6
across the available GPU devices 5 o
0.2
12000 GPU Memory Used 0

e GPU 0 Mem

10000
e GPU 1 Mem

8000
29 6000
4000

2000

1 357 911131517192123252729313335373941

time ---->

GPU Card Utilization
B GPUO

EGPU1

i

These measurements are taken from
the Demo Workload running in continuous
mode.

OpenPOWER'

b
s
[j]
I
il

:)g; |..)

Summary

= Hardware/Software Innovation Preview
demonstrated GPU Acceleration

" Improved DB2 BLU query throughput
* Use both POWERS processor and Nvidia GPUs
* Design and develop fast GPU kernels
* Use Nvidia kernels, function calls, etc

"= Hardware Acceleration shows potential for

* Faster execution time
* CPU off-loading

——————————————————————#0penPOWER"

