
Towards Fast SQL Query Processing in
DB2 BLU Using GPUs

A Technology Demonstration

Sina Meraji sinamera@ca.ibm.com

mailto:sinamera@ca.ibm.com

Please Note
 IBM’s statements regarding its plans, directions, and intent are subject to change or

 withdrawal without notice at IBM’s sole discretion.

 Information regarding potential future products is intended to outline our general
 product direction and it should not be relied on in making a purchasing decision.

 The information mentioned regarding potential future products is not a commitment,
 promise, or legal obligation to deliver any material, code or functionality. Information
 about potential future products may not be incorporated into any contract.

 The development, release, and timing of any future features or functionality described
 for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks
in a controlled environment. The actual throughput or performance that any user will
experience will vary depending upon many factors, including considerations such as
the amount of multiprogramming in the user’s job stream, the I/O configuration, the
storage configuration, and the workload processed. Therefore, no assurance can be
given that an individual user will achieve results similar to those stated here.

Outline

 DB2 BLU Acceleration

 Hardware Acceleration

 Nvidia GPU

 Key Analytic Database Operators

 Our Acceleration Design

 Live Technology Demonstration

DB2 with BLU Acceleration

Next generation database
Super Fast (query performance)
Super Simple (load-and-go)
Super Small (storage savings)

Seamlessly integrated
Built seamlessly into DB2
Consistent SQL, language interfaces,
administration
Dramatic simplification

Hardware optimized
Memory optimized
CPU-optimized
I/O optimized

Risk system injects 1/2 TB
per night from 25 different

source systems.
 “Impressive load times.”

Some queries achieved an
almost 100x speed up with

literally no tuning.

6 hours!

Installing BLU
to query results

One of the world’s most profitable
and secure rated banks.

© 2015 IBM Corporation

DB2 with BLU Acceleration:
The 7 Big Ideas

6

Hardware Acceleration

 Use specific hardware to execute software
functions faster

 Popular accelerator technology
• SIMD

 Present in every CPU

• GPUs

 Easy to program

• FPGA

 Hard to program

Nvidia GPU

 NVIDIA Tesla K40

• Kepler technology

• Peak double precession performance: 1.66
TFLOPs

• Peak single precession performance: 5 TFLOPs

• High Memory Bandwidth: up to 288 GB/Sec

• Memory Size: 12GB

• Number of cores: 2880

Key Analytic Database Operators

 GROUP BY / Aggregation
• SELECT column_name, aggregate_function(column_name)

FROM table_name
WHERE column_name operator value
GROUP BY column_name;

 Join
• SELECT column_name(s)

FROM table1
JOIN table2
ON table1.column_name=table2.column_name;

 Sort
• SELECT column_name

FROM table_name
ORDER BY column_name;

Hardware Configuration

 POWER8 S824L
• 2 sockets, 12 cores per socket, SMT-8, 512GB

• Ubuntu LE 14.04.02 LTS

 GPU:
• 2 NVIDIA Tesla K40

Infrastructure

 Adding the support for Nvidia GPU
• CUDA (Compute Unified Device Architecture) is a

parallel computing platform and programming
model created by NVIDIA

 Memory Management
• Pin/Unpin memory

• To run on GPU, threads asks for pinned memory

• This is for fast transfers to/from GPU
 PCI-E Gen3

• Will be improved in 2016 with Nvlink on POWER

GPU Scheduler

 Each CPU thread can submit tasks to GPU
scheduler

• Should submit memory requirement on GPU

 The scheduler checks all the GPUs on the
system

• Reserve the memory on the GPU

• Create a stream

• Return to the CPU thread with GPU number
and stream Id

Our Acceleration Design

 Use parallel POWER8 threads for reading/pre-
processing data

 Transfer data to GPU

 Have the GPU to process the query

 Transfer the result back to host machine

Hybrid Design: Use Both POWER8 and
GPU for Query Processing

 Decide where to execute the query dynamically at
runtime
• Use GPU only
• Use CPU only
• Use both

GPU Kernels

 Design and develop our own GPU runtime

 Developed fast kernels
• e.g. GROUP BY, aggregation

 Use Nvidia CUDA calls
• e.g. Atomic operations

 Use Nvidia fast kernels
• e.g. sort

15

Group By/Aggregation

 What does it do?

 SELECT C1, SUM(C2) FROM simple_table
GROUP BY C1

Simple_Table

C1 SUM(C2)

9 280

3 38

2 43

C1 C2

9 98

2 21

9 92

3 38

9 90

2 22

Group by/Aggregate Operation in GPU

• Hash based algorithm
• Use grouping keys and a hash function to insert keys

to a hash table

• Aggregation
– Use Nvidia Atomic CUDA calls for some data types

(INT32, INT64,etc)
– Use Locks for other data types (Double, FixedString, etc)

• Three main steps
– Initialize the hash table
– Grouping/Aggregation in a global hash table
– Scanning the global hash bale to retrieve groups

Initialization kernel
• Create/initialize the hash table in device memory

• Data needs to be aligned  May need Padding
– Grouping key can be anywhere in the hash table based on alignment requirements

• Initialization happens in parallel using parallel GPU threads

• Select SUM(C1), MIN(C2), MAX(C3) from table1 Group by(C1)
– Int 64: C1, C2

– Int 32: C3

C1(64bit) SUM(C1)
(64bit)

MAX(C2)(64bit)

MIN(C3)(64bit)

Padding(32 bit)

FFFFFFFFFFFFFFFF 0 -9223372036854775808 2147483647 0

FFFFFFFFFFFFFFFF 0 -9223372036854775808

2147483647 0

 … …

FFFFFFFFFFFFFFFF 0 -9223372036854775808 2147483647 0

Hash based Group by/Aggregate
• Group by:

– Parallel threads read keys/payloads from table and insert keys to HT

– Use a hash function to hash keys

–Murmur hashing: Wide keys(larger than 64bit)
–http://en.wikipedia.org/wiki/MurmurHash

–Mod hashing: short keys(smaller than 64bit)

– If collision happens, we check the next empty slot in hash table

• Aggregation:
– If thread key matches an entry in HT we need to perform the

Agg function

 Key Payload 1 Payload2

ABFGH 13 21.2

Key Sum Min

….. ….. …..

ABFGH 8 1.2

….. ….. …..

Thread i
HT(before Aggregation)

Key Agg1 AGG2

….. ….. …..

ABFGH 21 1.2

….. ….. …..

HT(After Aggregation)

http://en.wikipedia.org/wiki/MurmurHash
http://en.wikipedia.org/wiki/MurmurHash

Aggregation

• CUDA atomic operations for
– Implemented in hardware(very fast)
– Use for both global and shared memory
– Specific data types(INT32, INT64, etc)

• Use AtomicCAS for specific data types e.g. Double

– Specific Agg functions/data types
 __device__ double atomicAdd(double* address, double val) {
 unsigned long long int* address_as_ull = (unsigned long long int*)address;
 unsigned long long int old = *address_as_ull, assumed;
 do {
 assumed = old;
 old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val + _longlong_as_double(assumed)));
 }while(assumed != old);

 return __longlong_as_double(old);

 }

Check Nvidia docs for more details: http://docs.nvidia.com/cuda/cuda-c-
programming-guide/#atomic-functions

Aggregation(Continued)

• Locks
– For datatypes that are larger than 64 bits

–Decimal, FixedString

– Each thread needs to perform following

–Acquire a lock which is associated with the
corresponding entry in hash table

–Apply the AGG function

–Release the lock

– Costly operation

Hash-Based Group By/Aggregate

 SELECT C1, SUM(C2) FROM Simple_Table GROUP BY C1

KEY Value

93 5

23 2

93 1

23 5

93 0

93 1000
P

aralle
l H

T C
re

atio
n

Key Aggregated
Value

23 7

93 1006

Simple_Table

Hash Table

23 7

93 1006

P
aralle

l
P

ro
b

e

Result

Supported Data Types
& AGG functions

SQL-- MAX MIN SUM COUNT

SINT8 Cast to SINT32 Cast to SINT32 Cast to SINT 32 AtomicCount

SINT16 Cast to SINT32 Cast to SINT32 Cast to SINT32 AtomicCount

SINT32 AtomicMax AtomicMin AtomicAdd AtomicCount

SINT64 AtomicMax AtomicMin AtomicAdd AtomicCount

REAL Use AtomicCAS Use AtomicCAS AtomicAdd AtomicCount

DOUBLE Use AtomicCAS Use AtomicCAS Use AtomicCAS AtomicCount

DECIMAL Lock Lock Use AtomicADD(2-3
steps)

AtomicCount

DATE CAST to SINT32 CAST to SINT32 N/A AtomicCount

TIME CAST to SINT32 CAST to SINT32 N/A AtomicCount

TIMESTAMP(64bit) AtomicMax AtomicMIn N/A AtomicCount

FixedString Lock Lock N/A AtomicCount

GPU SORT
• Reduced the amount of data transferred between host

and GPU device
– Use Nvidia Fast sort kernel
– Copy key and data to GPU memory, use 4-byte key and 4-byte

payload
– Skip the copying back of the sorted keys
– Skip the copying of payload data into GPU memory on

subsequent sorts to resolve duplicates.
– Use the same data format between DB2 and GPU sort routines

• Handling multiple small sort jobs concurrently in the

GPU
– Handle multiple small sort jobs in the GPU
– Each thread works on sort data range
– there are more sort key bytes to process

GPU SORT

• Where GPU performs BEST:

– Up to 750M rows when all sort data fit within GPU device
memory

– Sort on single integer column of size 4-byte or less.
i.e. only one trip to the GPU is required

 Acceleration Demonstration

• Accelerating DB2 BLU Query Processing with Nvidia GPUs on POWER8
Servers
• A Hardware/Software Innovation Preview

• Compare query acceleration of DB2 BLU with GPU vs. non- GPU baseline
• Show CPU offload by demonstrating increased multi-user throughput

with DB2 BLU with GPU

BLU Analytic Workload

 A set of Queries from existing BLU Analytic
workloads
• TPC-DS database schema

 Based on a retail database with in-store, on-line, and
catalog sales of merchandise

• 15% of queries use GPU heavily

• 50% of queries use GPU moderately

• 35% of queries do not use GPU at all

 Benchmark Configuration

• 100 GB (raw) Data set

• 10 concurrent users

Performance Result

Using GPU
No GPU

0

500

1000

1500

2000

2500

3000

3500

4000

Queries Per Hour

BDI CQ1

GROUP BY Store Sales

ROLAP Q11

ROLAP Q20

ROLAP Q5

Simple Non-GPU Q15

Simple Non-GPU Q47

GPU vs CPU

Avg CPU Total Duration

Avg GPU Total Duration

●~2x improvement in workload
throughput

●CPU Offload + improved query
runtimes are the main factors

●Most individual queries improve in end-to-end

run time

GPU Utilization

0

0.2

0.4

0.6

0.8

1

1.2

Time ----------------->

U
ti

liz
at

io
n

GPU Card Utilization
GPU 0

GPU 1

The DB2 BLU GPU demo technology
will attempt to balance GPU operations
across the available GPU devices

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

0

2000

4000

6000

8000

10000

12000

time ---->

M
iB

GPU Memory Used

GPU 0 Mem

GPU 1 Mem

These measurements are taken from
the Demo Workload running in continuous
mode.

Summary

 Hardware/Software Innovation Preview
demonstrated GPU Acceleration

 Improved DB2 BLU query throughput
• Use both POWER8 processor and Nvidia GPUs

• Design and develop fast GPU kernels

• Use Nvidia kernels, function calls, etc

 Hardware Acceleration shows potential for
• Faster execution time

• CPU off-loading

30

