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GPU ACCELERATION OF WSMP 
(WATSON SPARSE MATRIX PACKAGE) 



WATSON SPARSE MATRIX PACKAGE (WSMP) 
Cholesky, LDLT, LU factorization 

Distributed- and shared-memory algorithms 

Scalable, employs theoretically most scalable factorization algorithm 

Uses multifrontal method 

This work concentrates on accelerating numerical factorization phase 



OBJECTIVE 
Acceleration of WSMP 

Demonstrate suitability of GPUs for Sparse Direct Solves  

Demonstrate suitability of GPUs for very irregular workloads 

 

Evaluate methods for accelerating WSMP 

Simple methods can work well 

More sophisticated methods can work better 

 

 

 



OUTLINE 
Minimally invasive acceleration of BLAS-intensive applications 

High level interface 

Acceleration techniques 

MPI acceleration 



Intercepting BLAS level 3 calls with big dimensions and sending them to 
GPU 

 

Tiling to hide copies 

 

 

 

 

PCIe and host memory bandwidth are limiting 

But many of the matrices are not big enough to be tiled (sizes) 

GPU ACCELERATION: MINIMALLY INVASIVE 
APPROACH 
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GPU ACCELERATION: MINIMALLY INVASIVE 
APPROACH 

We are intercepting simultaneous moderate-size calls 

each one is not big enough to fully occupy GPU 

Use streams to 

Increase GPU utilization 

Hide copy-up and copy-down 

Kernels may overlap 
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GPU ACCELERATION: MINIMALLY INVASIVE 
APPROACH  

Use host pinned buffers to increase copy-up/copy-down speed and enable 
asynchronous memory copies 

Send small BLAS calls to the CPU 

(m,n<128, k<512) 

Large matrices are tiled individually 

Can be used with ANY application, not just WSMP 

No recompilation of the code required 

 



RESULTS – SYSTEM USED  
Dual-socket Ivy-Bridge Xeon @ 3.0 Ghz 

20 cores total, PCIe gen3, E5-2690 v2 

Tesla K40, ECC on 

Intel MKL for host BLAS calls 

CUDA 6.5 

Standard cuBLAS routines are used for BLAS and BLAS-Like. 

 



RESULTS – DROP-IN GPU ACCELERATION 
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SPARSE DIRECT SOLVERS 
 

Supernodes 

collections of columns with similar non-zero pattern 

provide opportunity for dense matrix math 

grow with mesh size due to ‘fill’ 

The larger the model, the larger the supernodes 

Supernodes in the factors are detected during  

symbolic factorization 
 

 



DENSE BLOCK CHOLESKY 
 

Basis for sparse direct algorithms 

Emphasizes dense math 

Dominated by computation of Schur complement 

 

 

 

 

 

 

A11 

A21 
A22 

At
21 

L21 

L11 

I 

0 I 

0  
A22 – L21 L

t
21 

0 Lt
11 

0 I 

Lt
21 

= X X 

GEMM 

POTRF – element-wise Cholesky factorization  

TRSM – triangular solve 

Schur 

complement 

L11 L
t
11 = A11  
 

L21 L
t
11 = A21  

 

A*
22 = A22 – L21 L

t
21 

  

 

 POTRF 
 

 TRSM  
 

  SYRK 
 



PARALLEL MULTIFRONTAL METHOD 
A task that owns the supernode 

Assembles  frontal matrix 

Factors the supernode 

Computes update frontal matrix, that will be used by the parent task 

In the beginning, many independent supernodes to be factored by parallel 
threads 

In the end, threads cooperate on the factorization of fewer remaining 
supernodes 



POTENTIAL FOR IMPROVEMENT 

Potentially big BLAS calls are 
split into smaller ones, hurting 
performance 

Same data is moved back and forth 
many times 

A lot of pressure on PCIe for data 
movement 

A lot of pressure on host memory 
bandwidth 

A few GB of memory allocated 
on the device and has to be 
pinned on the host 

 

 



SOLUTION – HIGH LEVEL INTERFACE 
Most of the work in Cholesky factorization is performed in dtrsmsyrk calls 
(dtrsm followed by dsyrk) 

Bigger BLAS dimensions are more favorable for the GPU 

Big dtrsmsyrk calls are sent to GPU (inner dimension >= 512) 

Still need to hide data transfer, but there is much less data motion 
between the host and the device 

Less memory needed on the device,  less pinned memory on the host 

 



DTRSM IMPLEMENTATION 

L21 

L11 

L21L11
T=A21 • DTRSM is tiled 

• Tiles and related copies are submitted to different streams 

• Results are kept on the GPU, as they will be needed for dsyrk 

• Copy is sent to the CPU 

• Host buffers are used for staging host data 



DSYRK IMPLEMENTATION 
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• Dsyrk is tiled 

• Different tiles and 

related copies are 
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• L21L21
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• On the host update A22-
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• m=384 with 4 streams 

enough to have GPU 
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TILED DTRSM/DTRSMSYRK 

A11 

A21 

B1, X1 B2 

A22 

• When inner dimension of dtrsm is 

too big, it has to be tiled 

• X1is calculated from X1A11
T=B1 as 

described before 

• dsyrk update is performed if needed 

• B2 <- B2-X1A21
T, X1 is in the GPU 

memory, B2  and A21 are on the CPU 

• Process is repeated for the 

remainder of the matrix 



MEMORY REQUIREMENTS 
For tiled dgemm with at most 2048 by 2048 quad-tiles: 

12 tiles, 400 MB 

For tiled dtrsm-syrk, with at most 2048 by 2048 tiles: 

12 tiles, 400 MB 

Buffer for dtrsm results: 

With k <=2048 1 GB is enough for front size up to 61000, bigger fronts can be handled by 
successive calls to dtrsm and tiled dsyrk 

Total is less than 2 GB 



RESULTS 
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PROFILE 

Drop-in 

High-level API 



HIGH LEVEL INTERFACE FOR LDL 
FACTORIZATION 

WSMP signals what data is likely to be reused, and it is cached on the GPU 

 



LDLT FACTORIZATION 
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scaling 
(cublasDdgmm)  

 

 

 

 

 

 

 

 

symmetric 
update 
(cublasDsyrkx) 

 

L11 

L21 

1) 

= S21 L21 D 

2) 

C=C-S21L21 

3) 

L21 and S21 are kept in the GPU memory between operations 



LDL RESULTS 
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SPEEDUP 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 0.2 0.4 0.6 0.8 1

Sp
e

e
d

-u
p

 

Fraction of factorization flops with k>=512 

Cholesky

LDL



DISTRIBUTED MEMORY PARALLEL 
FACTORIZATION (MPI) 

Factorization by p processes 

Best performance when p is power of 2 

Factorization of levels below 

top log p levels is performed by 

the processes independently 

Processes cooperate on  

factoring upper levels of the  

elimination tree 

 

 



DISTRIBUTED MEMORY PARALLEL 
FACTORIZATION 

Update matrices are 
distributed between 
processes working on them in 
a block-cyclic fashion 

Smaller block size provides 
better load balancing 

With bigger block size, 
efficiency of BLAS3 operations 
increases 
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DISTRIBUTED MEMORY PARALLEL 
FACTORIZATION 

On the GPU block size ideally should be 512 or more 

Determined by PCIe and host memcopy copy speed 

Large tiles hurt load balancing 

For our test system, 512 block size provides best performance 

 



CACHING FOR MPI  
Dtrsm  

results are kept in the GPU cache 

Dgemm 

One of the matrices that is going to be reused is put in the GPU cache in the course of 
performing dgemm operation 

One of the matrices are in the GPU cache, another matrix is not reused 

Dsyrk 

Matrix can be in the GPU cache from previous operations, or on the host 

 

 



MPI SCALING RESULTS 
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# of mpi ranks, 10 cores and 1 GPU per rank 
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MPI SCALING ON BLUE WATERS 
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Number of cpu cores 

M10, CPU

M10, GPU

M20, CPU

M20, GPU

2.7x 

3.4x 

Blue Waters, AMD Interlagos, 16 CPU cores vs.  8 CPU cores + 1 K20 GPU 



FUTURE WORK 
Share the work  with CPU – now for many models it is idle as almost all 
work is sent to the GPU 

Multi-GPU 

Tuning to automatically set off-load cutoffs for a variety  of systems 
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