

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA

WATSON SPARSE MATRIX PACKAGE (WSMP)

- Cholesky, LDL^T, LU factorization
- Distributed- and shared-memory algorithms
- Scalable, employs theoretically most scalable factorization algorithm
- Uses multifrontal method
- This work concentrates on accelerating numerical factorization phase

OBJECTIVE

- Acceleration of WSMP
 - Demonstrate suitability of GPUs for Sparse Direct Solves
 - Demonstrate suitability of GPUs for very irregular workloads
 - Evaluate methods for accelerating WSMP
 - Simple methods can work well
 - More sophisticated methods can work better

OUTLINE

- Minimally invasive acceleration of BLAS-intensive applications
- High level interface
- Acceleration techniques
- MPI acceleration

GPU TECHNOLOGY CONFERENCE

GPU ACCELERATION: MINIMALLY INVASIVE APPROACH

Intercepting BLAS level 3 calls with big dimensions and sending them to GPU

	CPU	H2D	Kernel	D2H	CPU
Tiling to hide co	opies				
	CPU		CP	U	

- PCIe and host memory bandwidth are limiting
- But many of the matrices are not big enough to be tiled (sizes)

GPU TECHNOLOGY CONFERENCE

GPU ACCELERATION: MINIMALLY INVASIVE APPROACH

- We are intercepting simultaneous moderate-size calls
 - each one is not big enough to fully occupy GPU
- Use streams to
 - Increase GPU utilization
 - Hide copy-up and copy-down
 - Kernels may overlap

GPU TECHNOLOGY CONFERENCE

GPU ACCELERATION: MINIMALLY INVASIVE APPROACH

- Use host pinned buffers to increase copy-up/copy-down speed and enable asynchronous memory copies
- Send small BLAS calls to the CPU
 - ▶ (m,n<128, k<512)
- Large matrices are tiled individually
- Can be used with ANY application, not just WSMP
- ▶ No recompilation of the code required

RESULTS - SYSTEM USED

Dual-socket Ivy-Bridge Xeon @ 3.0 Ghz

- 20 cores total, PCIe gen3, E5-2690 v2
- ▶ Tesla K40, ECC on
- Intel MKL for host BLAS calls
- CUDA 6.5

Standard cuBLAS routines are used for BLAS and BLAS-Like.

RESULTS - DROP-IN GPU ACCELERATION

2 x Xeon E5-2690 v2 + K40 (max boost, ECC=on)

SPARSE DIRECT SOLVERS

- Supernodes
 - collections of columns with similar non-zero pattern
 - provide opportunity for dense matrix math
 - grow with mesh size due to 'fill'
 - The larger the model, the larger the supernodes
 - Supernodes in the factors are detected during symbolic factorization

DENSE BLOCK CHOLESKY

- Basis for sparse direct algorithms
 - Emphasizes dense math

 $L_{11} L_{11}^{t} = A_{11} \qquad POTRF$ $L_{21} L_{11}^{t} = A_{21} \qquad TRSM$ $A_{22}^{*} = A_{22} - L_{21} L_{21}^{t} \qquad SYRK$

Dominated by computation of Schur complement

PARALLEL MULTIFRONTAL METHOD

- A task that owns the supernode
 - Assembles frontal matrix
 - Factors the supernode
 - Computes update frontal matrix, that will be used by the parent task
- In the beginning, many independent supernodes to be factored by parallel threads
- In the end, threads cooperate on the factorization of fewer remaining supernodes

POTENTIAL FOR IMPROVEMENT

- Potentially big BLAS calls are split into smaller ones, hurting performance
 - Same data is moved back and forth many times
 - A lot of pressure on PCIe for data movement
 - A lot of pressure on host memory bandwidth
- A few GB of memory allocated on the device and has to be pinned on the host

SOLUTION - HIGH LEVEL INTERFACE

- Most of the work in Cholesky factorization is performed in dtrsmsyrk calls (dtrsm followed by dsyrk)
- Bigger BLAS dimensions are more favorable for the GPU
- Big dtrsmsyrk calls are sent to GPU (inner dimension >= 512)
- Still need to hide data transfer, but there is much less data motion between the host and the device
- Less memory needed on the device, less pinned memory on the host

 $L_{21}L_{11}^{T} = A_{21}$

 L_{21}

DTRSM IMPLEMENTATION

- DTRSM is tiled
- Tiles and related copies are submitted to different streams
- Results are kept on the GPU, as they will be needed for dsyrk
- Copy is sent to the CPU
- Host buffers are used for staging host data

DSYRK IMPLEMENTATION

- Dsyrk is tiled
- Different tiles and related copies are submitted to the different streams
- L₂₁L₂₁^t result is sent to host buffer
- On the host update A₂₂-L₂₁L₂₁^t is performed
- m=384 with 4 streams enough to have GPU
 occupied

TILED DTRSM/DTRSMSYRK

- When inner dimension of dtrsm is too big, it has to be tiled
- X₁ is calculated from X₁A₁₁^T=B₁ as described before
- dsyrk update is performed if needed
- $B_2 <- B_2 X_1 A_{21}^T$, X_1 is in the GPU memory, B_2 and A_{21} are on the CPU
- Process is repeated for the remainder of the matrix

MEMORY REQUIREMENTS

- For tiled dgemm with at most 2048 by 2048 quad-tiles:
 - 12 tiles, 400 MB
- ▶ For tiled dtrsm-syrk, with at most 2048 by 2048 tiles:
 - ▶ 12 tiles, 400 MB
- Buffer for dtrsm results:
 - With k <=2048 1 GB is enough for front size up to 61000, bigger fronts can be handled by successive calls to dtrsm and tiled dsyrk
- Total is less than 2 GB

RESULTS

2 x Xeon E5-2690 v2 + K40 (max boost, ECC=on)

PROFILE

Drop-in

	19 s	19.5 s	20 s	20.5 s	21 5	21.5 s	22 s	22.5 s	23 s	23.5
🕂 Process "nd24k.bin" (32816)										
🖃 [0] Tesla K40m										
Context 1 (CUDA)										
– 🍸 MemCpy (HtoD)									and the second second	
🗆 🍸 MemCpy (DtoH)										
😭 Compute		I								

High-level API

HIGH LEVEL INTERFACE FOR LDL FACTORIZATION

WSMP signals what data is likely to be reused, and it is cached on the GPU

1)

LDL^T FACTORIZATION

 $L_{21} L_{11}^{t} = A_{21}$ dtrsm

scaling (cublasDdgmm) symmetric update (cublasDsyrkx)

 L_{21} and S_{21} are kept in the GPU memory between operations

LDL RESULTS

2 x Xeon E5-2690 v2 + K40 (max boost, ECC=on)

SPEEDUP

Fraction of factorization flops with k>=512

DISTRIBUTED MEMORY PARALLEL FACTORIZATION (MPI) Factorization by p processes

- Best performance when p is power of 2
- Factorization of levels below top log p levels is performed by the processes independently

GP

 Processes cooperate on factoring upper levels of the elimination tree

DISTRIBUTED MEMORY PARALLEL FACTORIZATION

 Update matrices are distributed between processes working on them in a block-cyclic fashion

GPU TECHNOLOGY CONFERENCE

- Smaller block size provides
 better load balancing
- With bigger block size, efficiency of BLAS3 operations increases

0										
0	0									
2	2	3								
2	2	3	3							
0	0	1	1	4						
0	0	1	1	4	4					
2	2	3	3	6	6	7				
2	2	3	3	6	6	7	7			
0	0	1	1	4	4	5	5	0		
0	0	1	1	4	4	5	5	0	0	

DISTRIBUTED MEMORY PARALLEL FACTORIZATION

- On the GPU block size ideally should be 512 or more
 - Determined by PCIe and host memcopy copy speed
- Large tiles hurt load balancing
- ▶ For our test system, 512 block size provides best performance

CACHING FOR MPI

- Dtrsm
 - results are kept in the GPU cache
- Dgemm
 - One of the matrices that is going to be reused is put in the GPU cache in the course of performing dgemm operation
 - One of the matrices are in the GPU cache, another matrix is not reused
- Dsyrk
 - Matrix can be in the GPU cache from previous operations, or on the host

MPI SCALING RESULTS

of mpi ranks, 10 cores and 1 GPU per rank

MPI SCALING ON BLUE WATERS

Blue Waters, AMD Interlagos, 16 CPU cores vs. 8 CPU cores + 1 K20 GPU

FUTURE WORK

- Share the work with CPU now for many models it is idle as almost all work is sent to the GPU
- Multi-GPU
- Tuning to automatically set off-load cutoffs for a variety of systems

ACKNOWLEDGEMENTS

- The Private Sector Program at NCSA
- Blue Waters project, supported by NSF (award number OCI 07-25070) and the state of Illinois