
NATALIA GIMELSHEIN NVIDIA

ANSHUL GUPTA IBM

STEVE RENNICH NVIDIA

SEID KORIC NCSA

GPU ACCELERATION OF WSMP
(WATSON SPARSE MATRIX PACKAGE)

WATSON SPARSE MATRIX PACKAGE (WSMP)
Cholesky, LDLT, LU factorization

Distributed- and shared-memory algorithms

Scalable, employs theoretically most scalable factorization algorithm

Uses multifrontal method

This work concentrates on accelerating numerical factorization phase

OBJECTIVE
Acceleration of WSMP

Demonstrate suitability of GPUs for Sparse Direct Solves

Demonstrate suitability of GPUs for very irregular workloads

Evaluate methods for accelerating WSMP

Simple methods can work well

More sophisticated methods can work better

OUTLINE
Minimally invasive acceleration of BLAS-intensive applications

High level interface

Acceleration techniques

MPI acceleration

Intercepting BLAS level 3 calls with big dimensions and sending them to
GPU

Tiling to hide copies

PCIe and host memory bandwidth are limiting

But many of the matrices are not big enough to be tiled (sizes)

GPU ACCELERATION: MINIMALLY INVASIVE
APPROACH

time

CPU H2D D2H Kernel CPU

CPU CPU

GPU ACCELERATION: MINIMALLY INVASIVE
APPROACH

We are intercepting simultaneous moderate-size calls

each one is not big enough to fully occupy GPU

Use streams to

Increase GPU utilization

Hide copy-up and copy-down

Kernels may overlap

Thread 0

Thread 1

Thread 2

Thread 3

CPU CPU

CPU CPU

CPU CPU

CPU CPU

GPU ACCELERATION: MINIMALLY INVASIVE
APPROACH

Use host pinned buffers to increase copy-up/copy-down speed and enable
asynchronous memory copies

Send small BLAS calls to the CPU

(m,n<128, k<512)

Large matrices are tiled individually

Can be used with ANY application, not just WSMP

No recompilation of the code required

RESULTS – SYSTEM USED
Dual-socket Ivy-Bridge Xeon @ 3.0 Ghz

20 cores total, PCIe gen3, E5-2690 v2

Tesla K40, ECC on

Intel MKL for host BLAS calls

CUDA 6.5

Standard cuBLAS routines are used for BLAS and BLAS-Like.

RESULTS – DROP-IN GPU ACCELERATION

1.48
1.45

1.66
1.53

1.37

1.67
1.77

0.88

1.30

1.82

0

100

200

300

400

500

600

700

P
e

rf
o

rm
an

ce
,

G
fl

o
p

s/
s

CPU

Drop-in

1.7x

2 x Xeon E5-2690 v2 + K40 (max boost, ECC=on)

SPARSE DIRECT SOLVERS

Supernodes

collections of columns with similar non-zero pattern

provide opportunity for dense matrix math

grow with mesh size due to ‘fill’

The larger the model, the larger the supernodes

Supernodes in the factors are detected during

symbolic factorization

DENSE BLOCK CHOLESKY

Basis for sparse direct algorithms

Emphasizes dense math

Dominated by computation of Schur complement

A11

A21
A22

At
21

L21

L11

I

0 I

0
A22 – L21 L

t
21

0 Lt
11

0 I

Lt
21

= X X

GEMM

POTRF – element-wise Cholesky factorization

TRSM – triangular solve

Schur

complement

L11 L
t
11 = A11

L21 L
t
11 = A21

A*
22 = A22 – L21 L

t
21

 POTRF

 TRSM

 SYRK

PARALLEL MULTIFRONTAL METHOD
A task that owns the supernode

Assembles frontal matrix

Factors the supernode

Computes update frontal matrix, that will be used by the parent task

In the beginning, many independent supernodes to be factored by parallel
threads

In the end, threads cooperate on the factorization of fewer remaining
supernodes

POTENTIAL FOR IMPROVEMENT

Potentially big BLAS calls are
split into smaller ones, hurting
performance

Same data is moved back and forth
many times

A lot of pressure on PCIe for data
movement

A lot of pressure on host memory
bandwidth

A few GB of memory allocated
on the device and has to be
pinned on the host

SOLUTION – HIGH LEVEL INTERFACE
Most of the work in Cholesky factorization is performed in dtrsmsyrk calls
(dtrsm followed by dsyrk)

Bigger BLAS dimensions are more favorable for the GPU

Big dtrsmsyrk calls are sent to GPU (inner dimension >= 512)

Still need to hide data transfer, but there is much less data motion
between the host and the device

Less memory needed on the device, less pinned memory on the host

DTRSM IMPLEMENTATION

L21

L11

L21L11
T=A21 • DTRSM is tiled

• Tiles and related copies are submitted to different streams

• Results are kept on the GPU, as they will be needed for dsyrk

• Copy is sent to the CPU

• Host buffers are used for staging host data

DSYRK IMPLEMENTATION

A*
22 = A22 – L21 L

t
21

Host

Memory,

dsyrk

Device

Memory

dtrsm

• Dsyrk is tiled

• Different tiles and

related copies are

submitted to the

different streams

• L21L21
t result is sent to

host buffer

• On the host update A22-

L21L21
t is performed

• m=384 with 4 streams

enough to have GPU

occupied

m

TILED DTRSM/DTRSMSYRK

A11

A21

B1, X1 B2

A22

• When inner dimension of dtrsm is

too big, it has to be tiled

• X1is calculated from X1A11
T=B1 as

described before

• dsyrk update is performed if needed

• B2 <- B2-X1A21
T, X1 is in the GPU

memory, B2 and A21 are on the CPU

• Process is repeated for the

remainder of the matrix

MEMORY REQUIREMENTS
For tiled dgemm with at most 2048 by 2048 quad-tiles:

12 tiles, 400 MB

For tiled dtrsm-syrk, with at most 2048 by 2048 tiles:

12 tiles, 400 MB

Buffer for dtrsm results:

With k <=2048 1 GB is enough for front size up to 61000, bigger fronts can be handled by
successive calls to dtrsm and tiled dsyrk

Total is less than 2 GB

RESULTS

1.48
1.45

1.66
1.53

1.37

1.67
1.77

0.88

1.52

1.82 1.97
1.93

2.30
2.23

1.67

2.36

2.01

1.12

2.22

2.48

0

100

200

300

400

500

600

700

800

900

N
u

m
e

ri
ca

l f
ac

to
ri

za
ti

o
n

, G
fl

o
p

s/
s

 CPU

Drop-in

High-level

2 x Xeon E5-2690 v2 + K40 (max boost, ECC=on)

PROFILE

Drop-in

High-level API

HIGH LEVEL INTERFACE FOR LDL
FACTORIZATION

WSMP signals what data is likely to be reused, and it is cached on the GPU

LDLT FACTORIZATION

L21 L
t
11 = A21

 dtrsm

scaling
(cublasDdgmm)

symmetric
update
(cublasDsyrkx)

L11

L21

1)

= S21 L21 D

2)

C=C-S21L21

3)

L21 and S21 are kept in the GPU memory between operations

LDL RESULTS

1.70
1.60

2.03 2.12

1.30

1.94

1.40

1.36

2.25

2.21

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

 N
u

m
e

ri
ca

l F
ac

to
ri

za
ti

o
n

, G
FL

o
p

/s

 LDL CPU

LDL GPU

2 x Xeon E5-2690 v2 + K40 (max boost, ECC=on)

SPEEDUP

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 0.2 0.4 0.6 0.8 1

Sp
e

e
d

-u
p

Fraction of factorization flops with k>=512

Cholesky

LDL

DISTRIBUTED MEMORY PARALLEL
FACTORIZATION (MPI)

Factorization by p processes

Best performance when p is power of 2

Factorization of levels below

top log p levels is performed by

the processes independently

Processes cooperate on

factoring upper levels of the

elimination tree

DISTRIBUTED MEMORY PARALLEL
FACTORIZATION

Update matrices are
distributed between
processes working on them in
a block-cyclic fashion

Smaller block size provides
better load balancing

With bigger block size,
efficiency of BLAS3 operations
increases

4

6

0

0

2

2

0

0

0

0

2

2

0

2

2

0

0

0

0

2

2

3

3

1

1

1

1

3

3

3

1

1

1

1

3

3

4

4

4

6

4

4

4

6

5

5

7

7

5

5

7

0

0 0

6

DISTRIBUTED MEMORY PARALLEL
FACTORIZATION

On the GPU block size ideally should be 512 or more

Determined by PCIe and host memcopy copy speed

Large tiles hurt load balancing

For our test system, 512 block size provides best performance

CACHING FOR MPI
Dtrsm

results are kept in the GPU cache

Dgemm

One of the matrices that is going to be reused is put in the GPU cache in the course of
performing dgemm operation

One of the matrices are in the GPU cache, another matrix is not reused

Dsyrk

Matrix can be in the GPU cache from previous operations, or on the host

MPI SCALING RESULTS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

P
e
rf

o
rm

a
n
c
e
,

G
F
lo

p
s/

s

of mpi ranks, 10 cores and 1 GPU per rank

Serena CPU

Serena GPU

Audi CPU

Audi GPU

MPI SCALING ON BLUE WATERS

100

1000

10000

100000

16 64 256 1024 4096

 F
a
c
to

ri
z
a
ti

o
n
 P

e
rf

o
rm

a
n
c
e
,

G
B
/s

Number of cpu cores

M10, CPU

M10, GPU

M20, CPU

M20, GPU

2.7x

3.4x

Blue Waters, AMD Interlagos, 16 CPU cores vs. 8 CPU cores + 1 K20 GPU

FUTURE WORK
Share the work with CPU – now for many models it is idle as almost all
work is sent to the GPU

Multi-GPU

Tuning to automatically set off-load cutoffs for a variety of systems

ACKNOWLEDGEMENTS
The Private Sector Program at NCSA

Blue Waters project, supported by NSF (award number OCI 07-25070) and
the state of Illinois

