Asynchronous K-Means Clustering
of Multiple Data Sets

Marek Fiser, lllia Ziamtsov, Ariful Azad,
Bedrich Benes, Alex Pothen

PURDUE

Motivation

Clustering bottleneck in Flow Cytometry research

3,000 data sets
25,000 points in 7D per data set
19 separate clustering tasks per data set

Parallel CPU time: 295 minutes
Other GPU implementations: 96 minutes (3x)

K-means clustering

1. Initialize cluster centers (randomly)
2. Assign each data point to the nearest cluster center
¢4 argmin [|x — p[|* {== Easy to parallelize

ie{1,2,....k}

3. Re-assign new cluster centers
S x;, fori=1,2,....k. {Z=3 Harder to parallelize

x;€C;

a \CI

4. If any cluster changed go to 2.

Problem definition

Multiple datasets (> 100)

Small data set size (2,000 - 200,000 points)
Low number of clusters (2 - 30)

Low number of dimensions (1 - 50)

All data sets are processed in serial
Synchronization overhead is high for small data sets

K-means clustering requires sync

1. Initialize cluster centers (randomly)
Assign each data point to the nearest cluster center

c <+ argmin |[|x — p;|[?
i€{1,2,....k}

3. Re-assign new cluster centers

Zx], for:=1,2,...,k.

a \CI erd) Synchronization

4. If any cluster changed go to 2.

The problem - graphs

Speedup of the GPUMiner (GPU) over the MineBench (CPU)

20 40
15 30
E) o Area of poor E) .o | Avea of poor
3 performance 3 performance
7] 7]
5 10 g
0 0
210 " 212 913 91 915 96 2 4 8 16 32 64 128

Data set size Number of clusters k

Our approach

Avoid kernel-wise CPU-GPU synchronization

Use only one CUDA-block for clustering
Use CUDA-streams to run as many blocks as possible

While the GPU is busy clustering the CPU is loading more data sets

Our approach - Timeline

CPU
Lload 1 Load 2 Load3 Salve Load 4 Sazve Load 5 [l s<3 Load 6 Sa:e

Memory copyH 0P ﬁ E

Save Save
6)

DtoH 4] %5
Stream 1 Clustering 1 Clustering 4

-

o

O stream2 Clustering 2 Clustering 5
Stream 3

Clustering 3

Time

Clustering 6

Our approach - Real timeline

= [Tesla kaoc 11 I N) I [e i | | | .]| .

[=] Context 1 (CUDA)

L S MemCpy (HtoD)

| |]
© 7 MemCpy DtoH) | I T N e R AR N S ¥ O

[=] Compute

[=| [0] Tesla K40c
[=| Context 1 (CUDA)
=57 MemCpy (HtoD)
L 57 MemCpy (DtoH)

. 0 | | -

[=] Compute

Implementation - Core

for each input data set i do {
D = Load Data (i);
s < Get Available Cuda Stream ();
Ensure Enough Pinned Memory (D, s);
Copy Data To Pinned Memory (D, s);

Schedule Mem Copy From Host To Device On Stream (s);
Schedule Cuda Kernel Invocation On Stream (s);
Schedule Mem Copy From Device To Host On Stream (s);

Implementation - Get Cuda Stream function

freeStream — null ;
while (freeStream == null) {
for each stream s, do {
if (Is Stream Finished (s,)) {
D < Download Results From Pinned Memory (s,);
Save Results (D);
freeStream = s_;

A

return freeStream;

Non-paged (pinned) memory

Required to use with CUDA streams
Uses Direct memory access (DMA) for memory copies

Used for both input and output

Pooled per stream

Flow Cytometry Data

2,872 individual data sets

25,000 points per dataset, 7 dimensions

19 separate clusterings for k={2, ..., 20}

Total: 2,872 - 19 = 54,568 individual clustering tasks

CPU: Intel Core i7 2600k @ 3.40GH
GPU: Tesla K40

Results on the Flow Cytometry Data

- -
20 — —
18
16
o 14
E
< 12
=
o 10
<
o 8
a
w 6
4
2 -
o | M
Mine- Mine-
bench STAMP bench S'erba.n GPUMiner | Our GPU Our GPU
. parallel Giuroiu kmeans++
serial parallel
Speedup 1 2.5 3.2 4.2 7.8 198.1 207.8
Time (m) 747 295 233 180 96 3.8 3.5

Mine bench — North Western, STAMP — Stanford, GPUMiner — Hong Kong University of Science and Technology

Speedup as a function of data sets count

80

2-20 clusters (no 10)
70 —e— 2-20 clusters (with 10)
60

—e— 20 clusters (no 10)

—e— 20 clusters (with 10)

20 clusters (no 10) GPUMiner
20 clusters (with 10) GPUMiner

d - 5 20 21 22 23 24 25 26 27 28 29 210
n=20.000 Number of data sets
]

Strengths

High performance on multiple data sets

Low memory requirements

Asynchronous - hides I/0 overhead

The kernel uses only one CUDA block

Limitations

The kernel can use only one CUDA block

~30 data sets have to fit in the GPU memory at once

Has to process multiple data sets

Conclusion

High speedup due to synchronization overhead elimination

Our technique can be applied to other problems which:
Independently process multiple input data sets
Data sets are relatively small
Algorithm may require synchronization

Asynchronous K-Means Clustering
of Multiple Data Sets

Marek Fiser

