
Asynchronous K-Means Clustering
of Multiple Data Sets

Marek Fiser, Illia Ziamtsov, Ariful Azad,
Bedrich Benes, Alex Pothen

Motivation
Clustering bottleneck in Flow Cytometry research

3,000 data sets
25,000 points in 7D per data set
19 separate clustering tasks per data set

Parallel CPU time: 295 minutes
Other GPU implementations: 96 minutes (3x)

K-means clustering

Easy to parallelize

Harder to parallelize

1. Initialize cluster centers (randomly)
2. Assign each data point to the nearest cluster center

3. Re-assign new cluster centers

4. If any cluster changed go to 2.

Problem definition

Multiple datasets (> 100)
Small data set size (2,000 – 200,000 points)
Low number of clusters (2 – 30)
Low number of dimensions (1 – 50)

All data sets are processed in serial
Synchronization overhead is high for small data sets

Synchronization has to be performed for every iteration of k-means algorithm

K-means clustering requires sync

1. Initialize cluster centers (randomly)
2. Assign each data point to the nearest cluster center

3. Re-assign new cluster centers

4. If any cluster changed go to 2.
Synchronization

The problem – graphs

210 211 212 213 214 215 216
0

5

10

15

20

Sp
ee

du
p

Data set size

Speedup of the GPUMiner (GPU) over the MineBench (CPU)

2 4 8 16 32 64 128
0

10

20

30

40

Sp
ee

du
p

Number of clusters k

Area of poor
performance

Area of poor
performance

Our approach

Avoid kernel-wise CPU-GPU synchronization

Use only one CUDA-block for clustering
Single CUDA-block can be synchronized within GPU using __syncblocks()

Use CUDA-streams to run as many blocks as possible
Thanks to CUDA-streams the clustering is fully asynchronous

While the GPU is busy clustering the CPU is loading more data sets
There is nearly no overhead with I/O operations of the CPU

Our approach – Timeline

Time

Our approach – Real timeline

Implementation – Core
for each input data set i do {

D = Load Data (i); // Loads data from HDD or other source.
s ← Get Available Cuda Stream (); // Blocking operation
Ensure Enough Pinned Memory (D, s); // Every stream has associated pinned memory
Copy Data To Pinned Memory (D, s);

Schedule Mem Copy From Host To Device On Stream (s);
Schedule Cuda Kernel Invocation On Stream (s);
Schedule Mem Copy From Device To Host On Stream (s);

}

Asynchronous
(non-blocking)

Implementation – Get Cuda Stream function
freeStream ← null ;
while (freeStream == null) {

for each stream si do {
if (Is Stream Finished (si)) {

D ← Download Results From Pinned Memory (si);
Save Results (D);
freeStream = si ;

} } }
return freeStream;

Non-paged (pinned) memory

Required to use with CUDA streams

Uses Direct memory access (DMA) for memory copies

Used for both input and output
It is allocated big enough, size = max(input size, output size)

Pooled per stream
Memory is re-used for consecutive datasets, or re-allocated if needed

Flow Cytometry Data

2,872 individual data sets
25,000 points per dataset, 7 dimensions
19 separate clusterings for k={2, …, 20}
Total: 2,872 · 19 = 54,568 individual clustering tasks

CPU: Intel Core i7 2600k @ 3.40GH
GPU: Tesla K40

Results on the Flow Cytometry Data

Mine bench – North Western, STAMP – Stanford, GPUMiner – Hong Kong University of Science and Technology

Speedup as a function of data sets count

d = 5
n = 20,000

Strengths

High performance on multiple data sets

Low memory requirements
Can process unlimited amount of small data sets
Data sets can have different sizes

Asynchronous – hides I/O overhead

The kernel uses only one CUDA block
Simplifies programming and enables synchronization

Limitations

The kernel can use only one CUDA block

~30 data sets have to fit in the GPU memory at once
Number of points and their dimensions is the limitation

Has to process multiple data sets

Conclusion

High speedup due to synchronization overhead elimination

Our technique can be applied to other problems which:
Independently process multiple input data sets
Data sets are relatively small
Algorithm may require synchronization

Asynchronous K-Means Clustering
of Multiple Data Sets

Marek Fiser
mfiser@purdue.edu

http://www.marekfiser.com

This slides can be viewed on: http://goo.gl/arSaoF

Please complete the Presenter Evaluation sent to you by email or through the GTC Mobile App. Your feedback is important!

