
  

Advanced Geospatial Image Processing using 
Graphics Processing Units

Atle Borsholm
Ron Kneusel

Exelis Visual Information Solutions
Boulder, CO USA



  

Why?

● Common geospatial image processing algorithms are 
computationally demanding.

● Geospatial images are large and becoming larger.  Sizes of 
60,000 pixels on a side are not uncommon.

● GPU implementations of key geospatial processing algorithms 
can substantially offset this increase in calculation time.

● Users of our commercial products benefit from an environment 
that makes our tools easily extensible via the GPU.



  

AMPE – Advanced Massively Parallel Execution

● Geospatial – GPU versions of key algorithms for common 
computationally intensive processing provided out of the box.

● Image Processing – GPU versions of common processing 
routines provided out of the box.

● User-Defined Kernels – A sophisticated integration layer allows 
advanced users the ability to define, compile, and link custom 
GPU kernels within ENVI and IDL.

Three tiers integrated with ENVI and IDL:



  

ENVI and IDL

AMPE is fully integrated with and extends ENVI and IDL



  

AMPE - Geospatial Algorithms

● Orthorectification

● Atmospheric Correction (using QUAC)

● Principal Component Analysis (PCA)

● Adaptive Coherence Estimator (ACE)



  

AMPE – Image Processing

● Interpolation – multiple algorithms from nearest-neighbor to 
Lanczos

● Array operations – min/max, mean, rescale

● Analysis - joint histogram, mutual information,cross-correlation, 
eigenvectors



  

AMPE – Testing Environment

● CPU: Dell, six cores, 3.47 GHz Xeon, 12 GB RAM,
      Ubuntu 14.04

● GPU: CUDA 6.5, NVIDIA Tesla K40

All tests were performed on the following hardware:

N.B. CPU tests used optimized code in ENVI and IDL which itself
        was often multithreaded.



  

AMPE – Performance (Geospatial)

Orthorectification

Atmospheric Correction

Principal Components

Adaptive Coherence Estimator

CPU GPU Improvement

366.1 53.6       6.8x

138.72 5.16 26.9x

22.14 1.58 14.0x

70.28 4.10       17.1x

(time in seconds, average over multiple runs)



  

AMPE – Performance (Interpolation)

Nearest-Neighbor

Bilinear

Bicubic

Lagrange

CPU GPU Improvement

0.0402  0.0033 12.3x

0.0855  0.0007 127.0x

0.2220  0.0015 143.6x

1.4495  0.0015 947.4x

(time in seconds, average over multiple runs)



  

AMPE – User-defined Kernels

Calculate the normalized difference vegetation index (NDVI):

NDVI = (NIR – VIS) / (NIR + VIS)

Where:
NIR = Near infrared band
VIS = Visible band (red, ~675 nm) 



  

AMPE – User-defined Kernels

extern "C" {
__global__ void k_NDVI(short *NIR, short *VIS, float *result, int n)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    for ( ; i < n; i += blockDim.x * gridDim.x) {
        result[i] = ((float) NIR[i] - VIS[i]) / (NIR[i] + VIS[i]);
    }
}
}

- Kernel code in a separate .cu file (will change in future versions)

- Call ampe_build_kernel() from running ENVI/IDL session

- Will compile the kernel and build auto-generated IDL code (next slide)



  

AMPE – User-defined Kernels
function ampe::NDVI, NIR, VIS
    compile_opt idl2, logical_predicate

    ; parameter validation...

    ; allocate output device memory, float array
    output = ampe_makearray(NIR.dim, TYPE=4)

    ; define "C" entry point
    entry = 'k_NDVI'
    module = 'AMPE_NDVI' + self.bitString

    ; set up grid
    ng = NIR.n_elts / 256 + (NIR.n_elts mod nt gt 0) < 65000

    ; call kernel
    ampe_run, NIR, VIS, output, NIR.n_elts, THREAD_X=nt, GRID_X=ng, $
        FUNC=entry, MODULE=module, CALLBACK=self.oKernel

    return, output
end



  

AMPE – User-defined Kernels

IDL> d_nir = ampe_put(nir)
IDL> d_vis = ampe_put(vis)
IDL> d_ndvi = ampe.NDVI(d_nir, d_vis)
IDL> ndvi = ampe_get(d_ndvi)

- IDL> is the interactive IDL prompt
- NIR and VIS contain image bands on the CPU
- ampe_put() places the image bands on the GPU
- ampe.NDVI() calls a new method off the ampe object
- ampe_get() returns the NDVI array from the GPU



  

AMPE is...

Sophisticated geospatial analysis algorithms
and

common image processing routines
combined with

a framework for integrating user-defined kernels

in order to maximize performance using GPUs.



  

Thank you!

● Email
– Atle Borsholm (atle.borsholm@exelisinc.com)

– Ron Kneusel (ron.kneusel@exelisinc.com)

● Website
– www.exelisvis.com

Please complete the Presenter Evaluation sent to you by email or through the GTC Mobile App. Your feedback is important!

mailto:atle.borsholm@exelisinc.com
mailto:ron.kneusel@exelisinc.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

