GPUs in GAMESS:
The story of libcchem

Dave Tomlinson
Iowa State University

Outline

Introduction to GAMESS and Background of
methods

Electron Repulsion Integrals (ERI) and Hartree-
Fock

Coupled Cluster

GAMESS

General Atomic and Molecular Electronic Structure
System

One of the most widely used electronic structure codes

Maintained by the Gordon Group at Iowa State
University

In development for over 35 years with hundreds of
developers all over the world

Over 1 million lines of Fortran

"Advances in electronic structure theory: GAMESS a decade later" M.S. Gordon, M.W. Schmidt pp. 1167-
1189, in "Theory and Applications of Computational Chemistry: the first forty years" C. E. Dykstra, G.
Frenking, K. S. Kim, G. E. Scuseria (editors), Elsevier, Amsterdam, 2005.

3

Introduction to ab initio
methods

ab initio — from first principles

Solving the Schrodinger equation
- HY=EY

Very accurate energies structures of molecular
systems

Hartree-Fock

Coupled Cluster

Overview of selected ab initio
methods in GAMESS

 Hartree-Fock
* Most basic ab initio method

* Formally Scales O(N%), can be optimized down to
~O(N°) or better

* Most computationally expensive step 1s electron
repulsion integrals ERIf over atomic orbitals (AOs)

@'OC 1)c, 1)[1(/ r.lc, (2)c_(2)dV, dv,

Overview of Selected ab initio
Methods in GAMESS (cont.)

* Coupled Cluster
Cluster Expansion

P=Y¥,e!
where T=T,+T,+T;+...+Ty

 T.=1-particle operator
CCSD scales O(N®); CCSDT scales O(I\N?), ...
Compromise = CCSD(T): triples
perturbatively O(IN’)

— If the problem size is doubled, 128x more
expensive

Libcchem Background

« External C++ library for performance critical code

* Orniginally developed to allow GAMESS to be run
on GPUs

* Very Efficient CPU code as well

A. Asadchev, M. S. Gordon, J. Chem. Theory Comput., 8, 4166(2012)
7

Electron Repulsion Integrals

Major computational step in both ab initio and DFT
methods

Complexity is O(M3)-O(M4), M = number of Gaussian
basis functions

Rys Quadrature — proposed by Dupuis, Rys, King
(DRK)

. . *Required in every iteration
Molecule Specification *Very Expensive operation

*List of Atoms (Atomic Numbers Z) Stored procedures not
cheap one-tim *List of Nuclear Coordinates (R) scalable _ o
operation « Number of electrons *Re-compute in every iteration
List of Primitive Functions, exponents *Good target for GPU
* Number of contractions
Form the basis functions (M)

HCOI’C
(one-electron integrals) @ ERI
Kinetic Energy Integrals Initial guess of the wave Two Electron

™ \ function Repulsion Integral
Nuclear Attraction Obtain the guess at the @ @

Integrals (V) Density Matrix (P) (uvlro)

om?) O(M3) to O(M*)

| @ \‘ G - Matrix ’

o(M?)
G = [(ij| k) — Ya(ik|jhH1*P

v@ Update the density

matrix from C
Trarrsformations Repeat steps 4, 5, 6, 7
F =X’ FX
C’ € Diagonalize(F’)
c&exc’

e© Summary of Hartree-
S Fock Procedure

Form the Fock Matrix
F = Heore + GG

L.ibcchem RHF

 Restricted Hartree-Fock

e Sand P referto S and P
orbitals

» Basis set sorted to improve
data locality

=

A. Asadchev, M. S. Gordon, J. Chem. Theory Comput., 8, 4166(2012)
10

Libcchem RHF (Cont.)

Only the needed integrals are computed for each
block

- All integrals are not computed at once
Integrals are sorted for increased efficiency

Can be run on GPUs

4
n

Number of integrals ~ B

» For 1000 basis functions; number of integrals 1s
~125,000,000,000

Rys Quadrature
Implementation

Two low-level implementations

— Fully unrolled and simplified kernels for low angular momentum (L)
— Partially unrolled for more complex integrals (higher L)

— Make use of C++ templates & automatically generated code

Human hands-on code small: ~ 2,000 lines of code

Code kept small due to objects & generic templates
GPU implementation driven by complexity of integrals

Explicit unrolling can be controlled at different levels such
as shells, roots to test for performance improvements

Integrals Conclusion

* Very easy to generate the possible ERI shell
combinations using templates

Automatic code generation (both python & C++)

« Explicit unrolling can be controlled at different
levels such as shells, roots to test for
performance improvements

Basis CPU only
Input |Basis| Functions time K80 +CPU

Ginkgo | ccd 555 844.1 155.9

Intel(R) Xeon(R) CPU E5-1650 0 @ 3.20GHz

Coupled Cluster

Highly accurate family of methods

Most popular method is coupled-cluster with
iterative singles and doubles and non-iterative triples

(CCSD(T))

Easy to use “black box” method

Coupled Cluster (cont.)

 The CC wavefunction can be written as

T2 T3
LIJCC=6TCDO=(1+T+ +3|+'°°>CDO

2!

* T'is the cluster operator defined as
T: T1+T2+T3++TN

* The “CCSD” in CCSD(T) means the cluster
operator 1s truncated after T, giving

Tcesp =11 + 15

15

(T) Algorithm

for ¢ in V {
for b in c {
for a in b {

load t(o,0,a,b)
load t(o,0,a,c)
load t(o,0,b,c)

load v(o,0,0,a)
load v(o,0,0,Db)
load v(o,0,0,cC)

load v(o,0,Vv,a)
load v(o,0,v,Db)
load v(o,0,Vv,cC)

load

load v(o v,C, b
load v(o,v,a,c
load v(o,v,c,a
load v(o,v,a,b
load v(o,v,b,a

)
)
)
)
)
)

// t(i,j,e,a)*V(e,k,b,c) corresponds to

// dgemm(t(ij,e), V(e,k)), etc

t(i,j, k) = t(i,j,e,a)*V(e, k,b,c) t(i,m,a,b)*vV(j, k,m,c)
t(i,k,J) t(i,k,e,a)*V(e,J,c,b) t(i,m,a,c)*vV(k,j,m,b)
t(k,1i,73) (k,i,e,c)*V(e,J,a,b) t(k,m,c,a)*vV(i,j,m,b)
t(kljli) (kljlelc)*v elilbla) t(kfmlclb)*v jlilmla)
t(3,k, 1) (J,k,e,b)*V(e,1i,a,c) t(j,m,b,c)*V(k,i,m,a)
t(3,1,%k) (J,i,e,b)*V (e, k,c,a) t(j,m,b,a)*V(i, k,m,c)

A. Asadchev, M. S. Gordon, J. Chem. Theory Comput., 8, 4166(2012)

16

Single Node GPU For CC
performance (minutes)

Input CgH (N4O,/ccPVTZ SiH,B,H¢/aug-ccPVQZ C4N3Hs/aug-ccPVTZ

Direct 124 131 36

Direct+GPU" 53 65 26

CCSD 163 142 42

CCSD+GPU 95 75 33

CCSD Speed-up” 1.4x 1.9X 1.3X

I'GPU enabled
2 Overall CCSD speed-up

A. Asadchev, M. S. Gordon, J. Chem. Theory Comput., 8, 4166(2012)

Future Work

Gradients

Open Shell Methods
New Coupled Cluster

Further Optimizations

Thanks for listening.

Acknowledgments

Prof. Mark Gordon @Dz

Dr. Mike Schmidt nv' D I A®

Dr. Andrey Asadchev
NVIDIA
AFOSR-BRI

— Recall electron repulsion integrals over AOs
anc-M) ¢,/ r,lc,(2) ¢, (2dv.dy,

— E(PT2) requires transformation of these ERI from
AQOs to molecular orbitals (MOs) .
* Most time-consuming step in PT2

» Large number of these integrals, cannot store in memory
on single CPU

» Highly coupled transformation, tough to make parallel

Cluster expansion: Coupled cluster method
— V=Y, el: T=T +T,+T;+...+Ty
 T.=1-particle operator
— CCSD scales~N¢; CCSDT scales~Ng, ...
— Compromise = CCSD(T): triples perturbatively ~N’

Heterogeneous Computing

» Using multiple architectures on the same system
- CPU with a GPU

* Faster overall computations

* Power savings

Outline

Introduction

Libcchem Background
ROHF Background
Results and Conclusions

Future Work

Outline

Introduction

Libcchem Background
ROHF Background
Results and Conclusions

Future Work

Outline

Introduction

Libcchem Background
ROHF Background
Results and Conclusions

Future Work

Rys Quadrature algorithm

Rys Quadrature Algorithm
for all I do
for all k do
for all j do

for all i do
1(mn,/,s)=Q I(w,mn,l s) (w.mn,l s) (wmmn,l_,s)

w

end for
end for
end for
end for

= Summation over the roots over all the intermediate 2-D integrals

. floating point operations - 3*N*{ La2+1 J{ L,,2+1 j{ L02+1 J{ Ld2+1 J

= Recurrence, transfer and roots have predictable memory access
patterns, fewer flops. Quadrature step is the main focus here.

Automatic Code Generation

Number of registers per thread, shared memory per
thread block limits the thread blocks that can be
assigned per SM

Loops implemented directly result in high register
usage

Explicitly unroll the loops. How? Manually it’s tedious
and error-prone

Use a common template and generate all the cases
Python based Cheetah template engine is used- reuse

exis_%ing Python utilities and program support modules
easily.

CCSD Algorithm

for b in v { // loop over virtual b index
Dt (i, j,a) =

// terms with t

for u in v {
load t' (o,0,v,u)
// evaluate terms with t'
Dt += Vt'

}

// terms with v

for u in v {
load v' (o,0,v,u)
// evaluate terms with v'
Dt += V't

}

store Dt (o,0,Vv,b)

}

A. Asadchev, M. S. Gordon, J. Chem. Theory Comput., 8, 4166(2012)
28

ROHF Background

Restricted open-shell Hartree-Fock

Restricted 1n the sense that pairs of alpha and beta
electrons occupy the same orbitals

Used for open-shell calculations

Originally formulated by Roothaan in 1960!

1. C. C. J. Roothaan, Rev. Mod. Phys., 32, 179(1960)
29

ROHF vs. UHF vs. RHF
Orbital diagram

 Comparison of ROHF, UHF, and RHF

Rys Quadrature algorithm

Rys Quadrature Algorithm
for all I do
for all k do
for all j do
for all i do
1,k D=Q 1 (Wi j k1) (Wi j k1)L (Wi,j.k.L)
end for Y
end for
end for
end for

Overview of Selected ab initio
Methods in GAMESS (cont.)

« MP2
* Mogller-Plesset 2" order perturbation theory
* Scales as N\°,

* if the problem size is doubled, 32x more expensive

* Requires the integral transformation from AOs to
molecular orbitals (IMOs)

RHF Results

Basis CPU only
Input Basis Functions time K80 +CPU

Ginkgo ccd 555 844.1 155.9

CCSD Intermediates
Algorithm

for S in Shells {
for Q9 £ S {
for R in Shells {
for P in Shells {
// skip insignificant ints
if (!screen(P,Q,R,S)) continue;
// evaluate 2-e integrals (PQ|RS)
V(P,R,Q,S) = eri(P,Q,R,S);
}
// i and j are unrestricted
// loops over all P functions are implied
// loops over shells Q,S are implied
for r in R {
Uul(i,j,gq,s) = ...
Uvl2(i,3j,q,s) = ...
load t(o,0,n,r)
U2(i,j,q,s) += t(i,J,p,r)*V(p,r,q,s)

}

}

store Ul (i,3,0,S), Ul(j,1i,S,0Q)
store U12(i,3,9Q,S), Ul2(j,1,S,Q)
store U2(i,3,0Q,S), U2(j,1i,5,0Q)

A. Asadchev, M. S. Gordon, J. Chem. Theory Comput., 8, 4166(2012)
34

