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Molecular Dynamics onto Accelerators 
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Force -> Acceleration -> Velocity 
  ->  Position 

MD simulation step: 
• Each GPU-thread computes forces 

on single atoms 
 E.g., bond, angle, dihedrals 

and, nonbond forces 
• Forces are added to compute 

acceleration 
• Acceleration is used to update 

velocities  
• Velocities are used to update the 

positions 

 



The Strange Case of Constant Energy MDs 

----- Single precision 

• Enhancing performance of MD simulations allows simulations of 
larger time scales and length scales 

• GPU computing enables large-scale MD simulation 
 Simulations exhibit unprecedented speed-up factors 

 
• MD simulation of NaI solution system 

containing 988 waters, 18 Na+, and 

18 I−: GPU is X15 faster than CPU 

Constant energy MD simulation  
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The Strange Case of Constant Energy MDs 

----- Single precision 

• Enhancing performance of MD simulations allows simulations of 
larger time scales and length scales 

• GPU computing enables large-scale MD simulation 
 Simulations exhibit speed-up factors of X10-X30  

 
• MD simulation of NaI solution system 

containing 988 waters, 18 Na+, and 

18 I−: GPU is X15 faster than CPU 

Constant energy MD simulation  
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GPU double precision 



Just a Case of Code 
Accuracy? 

• A plot of the energy 
fluctuations versus time step 
size should follow an 
approximately logarithmic 
trend 1 

• Energy fluctuations are 
proportional to time step size 
for large time step size 

 Larger than 0.5 fs 

• A different behavior for step size 
less than 0.5 fs is consistent 
with results previously 
presented and discussed in 
other work 2 

1 Allen and Tildesley, Oxford: Clarendon Press, (1987) 
2 Bauer et al., J. Comput. Chem. 32(3): 375 – 385, 2011 



A Case of Irreproducible Summation 

• The modeling of finite-precision arithmetic maps an infinite set of real 
numbers onto a finite set of machine numbers 

• Addition and multiplication of N floating-point numbers is not associative 

• No control on the way N floating-point numbers are assigned to N threads  
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• Different thread orders cause 
round-off errors to accumulate in 
different ways, leading to 
different summation results 

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 



Worst-Case Error Bound vs. Actual Errors 

• In practice error bounds are overly pessimistic (i.e., usually 
N * ε   << 1) and thus unreliable predictors 
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Distributed Error Magnitudes for 10,000 threads  with values within (-1000, 1000)  

Worst case  
error bound 

Error magnitude 
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Existing Techniques for Increasing 
Reproducibility of Summation 

• Fixed reduction order 

 Ensuring that all floating-point operations are evaluated in the same 
order from run to run 

• Increased precision numerical types 

 Mixed precision - e.g. use of doubles for sensitive computations and 
floats everywhere else 

• Interval arithmetic 

 Replace floating-point types with custom types representing finite-
length intervals of real numbers 

• Techniques based on error-free transformations 

 Compensated summation e.g., Kahn and composite precision 

 Pre-rounded reproducible summation 
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Composite Precision: Data Structure 

• Decompose a numeric value into two single precision floating-
point numbers: a value and an error 

 

 

 

 

 

• Each arithmetic operation takes float2s as parameters and 
returns float2s 
 Error carried through each operation  

 Operations rely on self-compensation of rounding errors 
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struct float2{ 

    float val;   // Value or result 

    float err;   // Error approximation 

} x2; 

 

float2 x2  = x2.val + x2.err 



Composite Precision: Addition 

• Mathematically z2.err should be 0 
 But errors introduced by floating-point operations usually result in 

z2.err being non-zero 

• Subtraction is the same as addition, but y2.val = –y2.val  and 
y2.err   =  -y2.err  
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Pseudo-code 
 

float2  x2, y2, z2 

 

z2 = x2  +  y2 

 

Implementation 

 

float2  x2, y2, z2 

float t 

Z2.val = x2.val + y2.val  

t = z2.val - x2.val   

Z2.err = x2.val  - (z2.val – t) +  

       (y2.val – t) + x2.err  + y2.err   

 



Composite Precision: Multiplication and Division 
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Pseudo-code 
 

float2  x2, y2, z2 

 

z2 = x2  *  y2 

 

Implementation 

 

float2  x2, y2, z2 

Z2.val = x2.val  * y2.val 

Z2.err = (x2.val * y2.err) +  

        (x2.err * y2.val) +  

        (x2.err * y2.err) 

 

Pseudo-code 
 

float2  x2, y2, z2 

 

z2 = x2  /  y2 

 

Implementation  

 

float2  x2, y2, z2 

float t, s, diff 

t = (1 / y2.val)    

s = t * x2.val   

diff = x2.val - (s * y2.val ) 

Z2.val  = s 

Z2.err  = t * diff   

 

Multiplication 

Division 



Global Summation 

• Randomly generate an array filled with very large – e.g., 
O(106) - and very small – e.g., O(10-6) - numbers 
 Whenever you generate a number, the next number should be its 

negative 

 The total sum should be 0 
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Very small values Very large values 



Pre-Fermi GPUs Era 

• Randomly shuffled array of 1,000 values on a broad range of 
multi-core platforms 
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• Accuracy: 
 Double precision error is 

very small (10−8 to 10−9) 
 Single precision error is 

large (10+0) 
 Comp. prec. errors is 

close to the double 
precision (10−6 to 10−7) 

• Performance: 
 Double precision is 10 

times larger than single 
precision 

1 Taufer et al.  IPDPS (2010) 



From the pre-Fermi to the Fermi GPUs Era 

• On pre-Fermi GPUs, composite precision was a good 
compromise between result accuracy and performance 
 The performance slow-down of double precision arithmetic was 10 

times that of single precision arithmetic 
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From the pre-Fermi to the Fermi GPUs Era 

• On pre-Fermi GPUs, composite precision was a good 
compromise between result accuracy and performance 
 The performance slow-down of double precision arithmetic was 10 

times that of single precision arithmetic 

• On Fermi GPUs, the difference in performance between the 
two has significantly decreased 
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Newly Explored Space  

• We perform experiments on more recent Kepler GPUs as well 
as multi-core CPUs and Intel Phi coprocessor devices 

• We consider single, double, and composite precision (both 
float2 and double2) arithmetic 

• We test larger datasets (up to 10 million elements) 

• We study different work partitioning and thread scheduling 
schemes 

• We test existing multiple precision floating point libraries (i.e., 
GNU Multiple Precision Library on multicore CPUs and CUMP  
on GPUs) 

19 



Accuracy on Kepler GPUs 
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Single precision arithmetic (float) leads to a significant result drift: 
the computed global summation is as high as 100,000! 

Value range: 
(10-1,100) & 
 (106,107) 

Bars represent average absolute values of global summation over 4 runs 
The expected result is 0: the smaller value, the better accuracy 



Accuracy on Kepler GPUs 
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Double precision (double) shows drastic accuracy improvement 
Composite precision (double2) allows fully accurate results 

Value range: 
(10-1,100) & 
 (106,107) 

Bars represent average absolute values of global summation over 4 runs 
The expected result is 0: the smaller value, the better accuracy 



Accuracy on Kepler GPUs 
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Higher multithreading degrees lead to an improvement in accuracy 

Value range: 
(10-1,100) & 
 (106,107) 

Bars represent average absolute values of global summation over 4 runs 
The expected result is 0: the smaller value, the better accuracy 



Accuracy on Kepler GPUs 
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Double2 is still the preferable representation; the reported accuracy, 
decreases as difference in order of magnitude of input data grows  

Value range: 
(10-1,100) & 
 (106,107) 

Bars represent average absolute values of global summation over 4 runs 
The expected result is 0: the smaller value, the better accuracy 



Performance on Kepler GPUs 
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Bars represent the average runtime in seconds of global summation over 50 runs 

Runtime overhead of composite precision is hidden by ILP and DLP 



Performance on Kepler GPUs 

25 

The same tests using  
the CUMP library 
exhibit 14x slow-down 
in case of sequential 
execution and        
500x slow-down when 
running with 100 
threads 

Bars represent the average runtime in seconds of global summation over 50 runs 

Runtime overhead of composite precision is hidden by ILP and DLP 



Composite precision outperforms single and double precisions but  
increasing multithreading makes its accuracy worse 
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Accuracy on Multi-core CPUs and Intel Phi 

Bars represent average absolute values of global summation over 4 runs 
The expected result is 0: the smaller value, the better accuracy 

 8-core Intel Xeon  60-core Intel Phi 

1.00E-17

1.00E-15

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05

float double float2 double2

A
ve

ra
ge

 g
lo

b
al

 s
u

m
m

at
io

n
 

Numeric format 

1 thread

2 threads

4 threads

8 threads

16 threads



Accuracy on Multi-core CPUs and Intel Phi 
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Bars represent average absolute values of global summation over 4 runs 
The expected result is 0: the smaller value, the better accuracy 

Composite precision outperforms single and double precisions but  
increasing multithreading makes its accuracy worse 

 60-core Intel Phi 
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Lessons Learned and Future Directions  

Lessons learned: 

• The size of the array, the number of threads, and the work per thread 
affect the precision even of sequential code 

• The range of numbers affect drifting from expected result  

• The performance of double precision operations have substantially 
improved in later GPU generations 

• Intel Phi accuracy is significantly reduced by multithreading 

Future directions: 

• Extend the study to other techniques based on error-free transformations: 

 Kahan and Pre-Rounded Reproducible Summation 

• Understand how threads-to-core mapping schemes affect accuracy on 
accelerators 
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