
Numerical Reproducibility Challenges
on Extreme Scale Multi-Threading GPUs

Dylan Chapp1, Travis Johnston1,

Michela Becchi2, and Michela Taufer1

1University of Delaware
2University of Missouri

Molecular Dynamics onto Accelerators

1

Force -> Acceleration -> Velocity
 -> Position

MD simulation step:
• Each GPU-thread computes forces

on single atoms
 E.g., bond, angle, dihedrals

and, nonbond forces
• Forces are added to compute

acceleration
• Acceleration is used to update

velocities
• Velocities are used to update the

positions

The Strange Case of Constant Energy MDs

----- Single precision

• Enhancing performance of MD simulations allows simulations of
larger time scales and length scales

• GPU computing enables large-scale MD simulation
 Simulations exhibit unprecedented speed-up factors

• MD simulation of NaI solution system

containing 988 waters, 18 Na+, and

18 I−: GPU is X15 faster than CPU

Constant energy MD simulation

2

The Strange Case of Constant Energy MDs

----- Single precision

• Enhancing performance of MD simulations allows simulations of
larger time scales and length scales

• GPU computing enables large-scale MD simulation
 Simulations exhibit speed-up factors of X10-X30

• MD simulation of NaI solution system

containing 988 waters, 18 Na+, and

18 I−: GPU is X15 faster than CPU

Constant energy MD simulation

3

The Strange Case of Constant Energy MDs

----- Single precision

• Enhancing performance of MD simulations allows simulations of
larger time scales and length scales

• GPU computing enables large-scale MD simulation
 Simulations exhibit unprecedented speed-up factors

• MD simulation of NaI solution system

containing 988 waters, 18 Na+, and

18 I−: GPU is X15 faster than CPU

GPU single precision

GPU single precision

GPU double precision

4

The Strange Case of Constant Energy MDs

• Enhancing performance of MD simulations allows simulations of
larger time scales and length scales

• GPU computing enables large-scale MD simulation
 Simulations exhibit unprecedented speed-up factors

• MD simulation of NaI solution system

containing 988 waters, 18 Na+, and

18 I−: GPU is X15 faster than CPU

5

GPU double precision

Just a Case of Code
Accuracy?

• A plot of the energy
fluctuations versus time step
size should follow an
approximately logarithmic
trend 1

• Energy fluctuations are
proportional to time step size
for large time step size

 Larger than 0.5 fs

• A different behavior for step size
less than 0.5 fs is consistent
with results previously
presented and discussed in
other work 2

1 Allen and Tildesley, Oxford: Clarendon Press, (1987)
2 Bauer et al., J. Comput. Chem. 32(3): 375 – 385, 2011

A Case of Irreproducible Summation

• The modeling of finite-precision arithmetic maps an infinite set of real
numbers onto a finite set of machine numbers

• Addition and multiplication of N floating-point numbers is not associative

• No control on the way N floating-point numbers are assigned to N threads

7

• Different thread orders cause
round-off errors to accumulate in
different ways, leading to
different summation results

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

Worst-Case Error Bound vs. Actual Errors

• In practice error bounds are overly pessimistic (i.e., usually
N * ε << 1) and thus unreliable predictors

8

Distributed Error Magnitudes for 10,000 threads with values within (-1000, 1000)

Worst case
error bound

Error magnitude

N
u

m
b

er
 o

f
su

m
m

at
io

n
 o

rd
er

s

Existing Techniques for Increasing
Reproducibility of Summation

• Fixed reduction order

 Ensuring that all floating-point operations are evaluated in the same
order from run to run

• Increased precision numerical types

 Mixed precision - e.g. use of doubles for sensitive computations and
floats everywhere else

• Interval arithmetic

 Replace floating-point types with custom types representing finite-
length intervals of real numbers

• Techniques based on error-free transformations

 Compensated summation e.g., Kahn and composite precision

 Pre-rounded reproducible summation

9

Existing Techniques for Increasing
Reproducibility of Summation

• Fixed reduction order

 Ensuring that all floating-point operations are evaluated in the same
order from run to run

• Increased precision numerical types

 Mixed precision - e.g. use of doubles for sensitive computations and
floats everywhere else

• Interval arithmetic

 Replace floating-point types with custom types representing finite-
length intervals of real numbers

• Techniques based on error-free transformations

 Compensated summation e.g., Kahn and composite precision

 Pre-rounded reproducible summation

10

Existing Techniques for Increasing
Reproducibility of Summation

• Fixed reduction order

 Ensuring that all floating-point operations are evaluated in the same
order from run to run

• Increased precision numerical types

 Mixed precision - e.g. use of doubles for sensitive computations and
floats everywhere else

• Interval arithmetic

 Replace floating-point types with custom types representing finite-
length intervals of real numbers

• Techniques based on error-free transformations

 Compensated summation e.g., Kahn and composite precision

 Pre-rounded reproducible summation

11

Composite Precision: Data Structure

• Decompose a numeric value into two single precision floating-
point numbers: a value and an error

• Each arithmetic operation takes float2s as parameters and
returns float2s
 Error carried through each operation

 Operations rely on self-compensation of rounding errors

12

struct float2{

 float val; // Value or result

 float err; // Error approximation

} x2;

float2 x2 = x2.val + x2.err

Composite Precision: Addition

• Mathematically z2.err should be 0
 But errors introduced by floating-point operations usually result in

z2.err being non-zero

• Subtraction is the same as addition, but y2.val = –y2.val and
y2.err = -y2.err

13

Pseudo-code

float2 x2, y2, z2

z2 = x2 + y2

Implementation

float2 x2, y2, z2

float t

Z2.val = x2.val + y2.val

t = z2.val - x2.val

Z2.err = x2.val - (z2.val – t) +

 (y2.val – t) + x2.err + y2.err

Composite Precision: Multiplication and Division

14

Pseudo-code

float2 x2, y2, z2

z2 = x2 * y2

Implementation

float2 x2, y2, z2

Z2.val = x2.val * y2.val

Z2.err = (x2.val * y2.err) +

 (x2.err * y2.val) +

 (x2.err * y2.err)

Pseudo-code

float2 x2, y2, z2

z2 = x2 / y2

Implementation

float2 x2, y2, z2

float t, s, diff

t = (1 / y2.val)

s = t * x2.val

diff = x2.val - (s * y2.val)

Z2.val = s

Z2.err = t * diff

Multiplication

Division

Global Summation

• Randomly generate an array filled with very large – e.g.,
O(106) - and very small – e.g., O(10-6) - numbers
 Whenever you generate a number, the next number should be its

negative

 The total sum should be 0

15

Very small values Very large values

Pre-Fermi GPUs Era

• Randomly shuffled array of 1,000 values on a broad range of
multi-core platforms

16

• Accuracy:
 Double precision error is

very small (10−8 to 10−9)
 Single precision error is

large (10+0)
 Comp. prec. errors is

close to the double
precision (10−6 to 10−7)

• Performance:
 Double precision is 10

times larger than single
precision

1 Taufer et al. IPDPS (2010)

From the pre-Fermi to the Fermi GPUs Era

• On pre-Fermi GPUs, composite precision was a good
compromise between result accuracy and performance
 The performance slow-down of double precision arithmetic was 10

times that of single precision arithmetic

17

933

77.6

From the pre-Fermi to the Fermi GPUs Era

• On pre-Fermi GPUs, composite precision was a good
compromise between result accuracy and performance
 The performance slow-down of double precision arithmetic was 10

times that of single precision arithmetic

• On Fermi GPUs, the difference in performance between the
two has significantly decreased

18

4000

1400

Newly Explored Space

• We perform experiments on more recent Kepler GPUs as well
as multi-core CPUs and Intel Phi coprocessor devices

• We consider single, double, and composite precision (both
float2 and double2) arithmetic

• We test larger datasets (up to 10 million elements)

• We study different work partitioning and thread scheduling
schemes

• We test existing multiple precision floating point libraries (i.e.,
GNU Multiple Precision Library on multicore CPUs and CUMP
on GPUs)

19

Accuracy on Kepler GPUs

20

Single precision arithmetic (float) leads to a significant result drift:
the computed global summation is as high as 100,000!

Value range:
(10-1,100) &
 (106,107)

Bars represent average absolute values of global summation over 4 runs
The expected result is 0: the smaller value, the better accuracy

Accuracy on Kepler GPUs

21

Double precision (double) shows drastic accuracy improvement
Composite precision (double2) allows fully accurate results

Value range:
(10-1,100) &
 (106,107)

Bars represent average absolute values of global summation over 4 runs
The expected result is 0: the smaller value, the better accuracy

Accuracy on Kepler GPUs

22

Higher multithreading degrees lead to an improvement in accuracy

Value range:
(10-1,100) &
 (106,107)

Bars represent average absolute values of global summation over 4 runs
The expected result is 0: the smaller value, the better accuracy

Accuracy on Kepler GPUs

23

Double2 is still the preferable representation; the reported accuracy,
decreases as difference in order of magnitude of input data grows

Value range:
(10-1,100) &
 (106,107)

Bars represent average absolute values of global summation over 4 runs
The expected result is 0: the smaller value, the better accuracy

Performance on Kepler GPUs

24

Bars represent the average runtime in seconds of global summation over 50 runs

Runtime overhead of composite precision is hidden by ILP and DLP

Performance on Kepler GPUs

25

The same tests using
the CUMP library
exhibit 14x slow-down
in case of sequential
execution and
500x slow-down when
running with 100
threads

Bars represent the average runtime in seconds of global summation over 50 runs

Runtime overhead of composite precision is hidden by ILP and DLP

Composite precision outperforms single and double precisions but
increasing multithreading makes its accuracy worse

1.00E-17

1.00E-15

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05

float double float2 double2

A
ve

ra
ge

 g
lo

b
al

 s
u

m
m

at
io

n

Numeric format

1 thread

30 threads

60 threads

120 threads

240 threads

Accuracy on Multi-core CPUs and Intel Phi

Bars represent average absolute values of global summation over 4 runs
The expected result is 0: the smaller value, the better accuracy

 8-core Intel Xeon 60-core Intel Phi

1.00E-17

1.00E-15

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05

float double float2 double2

A
ve

ra
ge

 g
lo

b
al

 s
u

m
m

at
io

n

Numeric format

1 thread

2 threads

4 threads

8 threads

16 threads

Accuracy on Multi-core CPUs and Intel Phi

27

Bars represent average absolute values of global summation over 4 runs
The expected result is 0: the smaller value, the better accuracy

Composite precision outperforms single and double precisions but
increasing multithreading makes its accuracy worse

 60-core Intel Phi

1.00E-17

1.00E-15

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05

float double float2 double2

A
ve

ra
ge

 g
lo

b
al

 s
u

m
m

at
io

n

Numeric format

1 thread

30 threads

60 threads

120 threads

240 threads

 8-core Intel Xeon

1.00E-17

1.00E-15

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05

float double float2 double2

A
ve

ra
ge

 g
lo

b
al

 s
u

m
m

at
io

n

Numeric format

1 thread

2 threads

4 threads

8 threads

16 threads

Lessons Learned and Future Directions

Lessons learned:

• The size of the array, the number of threads, and the work per thread
affect the precision even of sequential code

• The range of numbers affect drifting from expected result

• The performance of double precision operations have substantially
improved in later GPU generations

• Intel Phi accuracy is significantly reduced by multithreading

Future directions:

• Extend the study to other techniques based on error-free transformations:

 Kahan and Pre-Rounded Reproducible Summation

• Understand how threads-to-core mapping schemes affect accuracy on
accelerators

28

Acknowledgments

Sponsors:

Contacts:
taufer@acm.org
becchim@missouri.edu

mailto:taufer@acm.org
mailto:becchim@missouri.edu

