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(Macro-) Economic Models

●International Real Business Cycle (IRBC) Models:    
Exchange Rates, Global Trade Imbalances

●Dynamic Stochastic General Equilibrium (DSGE) Models: 
Monetary Policy, Business Cycle Fluctuations

●Overlapping Generations (OLG) Models: 
Demographic Change, Social Security

→ Disclaimer: when I talk about Economics, I am not concerned with financial 
mathematics, financial engineering (option pricing, estimation of financial data,...)

0. Dynamic (Stochastic) Economic Models 

e.g. Stokey, Lucas & Prescott (1989), Ljundquist & Sargent (2004), Krüger & Kübler (2004), Judd et. al. (2013),...

e.g. Hager (2010), Holtz (2011), Heinecke et. al (2013), Winschel & Krätzig (2010),...



Our motivation

i) Economic models: heterogeneous & high-dimensional (e.g. IRBC)  

ii) Want to solve dynamic stochastic models with high-dimensional 
state spaces:  

“Θv = v”   |Θv
i
 – v

i+1
 | < ε

→ Have to interpolate high-dimensional functions

Problem: curse of dimensionality
 → Nd points in ordinary discretization schemes 
 
iii)   Want to overcome curse of dimensionality 

iv)  Want locality & adaptivity of interpolation scheme

iv)  Speed-up →  access hybrid HPC systems (MPI, OpenMP, GPU) 

0. Dynamic (Stochastic) Economic Models 
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Example: Infinite-Horizon Dynamic Programming

Want to choose an infinite sequence of “controls”                    to maximize 
 

s.t. 

(Discrete time) Dynamic programming seeks a time-invariant policy function h
mapping the state       into the control       ,   such that the sequence 
generated by iterating 

e.g. Stokey, Lucas & Prescott (1989), Judd (1998), ...

starting from an initial condition solves the original problem.

r in the economic context: often a so-called `utility function'.
r  concave: reflects the notion “more is better”; marginal benefit tends to zero. 

0. Dynamic (Stochastic) Economic Models 
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Value Function Iteration

The solution is approached in the limit as                      by iterations on
at every coordinate of the discretized grid.  

s.t.

x: grid point, describes your system.
State-space potentially high-
dimensional.

`old solution': 
high-dimensional function, 
approximated by sparse grid 
Interpolation method on which we
Interpolate.

Use-case for (adaptive) sparse grids

0. Dynamic (Stochastic) Economic Models 
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Dynamic Economic Models as 
Functional Equations
State of the economy at time t (e.g. capital holdings of different countries). 

→ State influences agent's dynamic behaviour (e.g. investment choices for each country).

Y: space of possible policies (e.g. investment choices).

Transition of the economy from one period to the next
→ depends on the current state and policies.
→ distribution F is given.

→ p is a solution to the following type of functional equation:

E is given by period-to-period Equilibrium conditions of the model.
→ solve for p by backward iteration →  time iteration ('fixpoint problem'): 

0. Dynamic (Stochastic) Economic Models 
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Interpolation on a Full Grid
-Consider a d-dimensional function                        on Ω = [0,1]d

-In numerical simulations: 
 f might be expensive to evaluate! (Optimization/system of non-linear Eqs.)
 

-But: need to be able to evaluate f at arbitrary points using 
         a numerical code (since we iterate on 'old' solution)

-Construct an interpolant u of f 

-With suitable basis functions: 

-and coefficients:  
   

I. From full grids to sparse grids
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Basis Functions &
Hierarchical Increment Spaces

I. From full grids to sparse grids

Hierarchical increment spaces:

with the index set I
l
 (i almost always 'odd')

  

The corresponding function space:

The 1d-interpolant (multi-d: Tensor product)

Fig.: 1-d basis functions 
and the corresponding grid points up 
level l = 3  in the hierarchical basis.
support of all basis functions of 
W

k
 mutually disjoint!!!MOVIE!!
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Why reality bites...

Interpolant consists of  O(2nd) grid points 

For sufficiently smooth f and its interpolant u, we obtain 
an asymptotic error decay of 
                                                    
But at the cost of 

function evaluations → “curse of dimensionality”

Hard to handle more than 4 dimensions numerically
 
       e.g. d=10, n = 4, 15 points/d, 5.8 x 1011 grid points   
 

I. From full grids to sparse grids



GTC  2015 - San Jose

`Breaking' the curse of dimensionality II

-Strategy for constructing sparse grid: leave out those subspaces  from full 
grid that only contribute little to the overall interpolant.
 
- if second mixed derivatives are bound:

-Optimization w.r.t. number of degrees of freedom (grid points) and the 
approximation accuracy leads to the sparse grid space of level n.

I. From full grids to sparse grids

(see, e.g. Bungartz & Griebel (2004)) 

100d Sparse grid: 1,394,001       
100d Full grid  > Googol

Sparse grid: 29 pt.
Full grid      : 81 pt.
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Adaptive Sparse Grids
-Surpluses quickly decay to zero 
 as the level of interpolation 
 increases assuming a smooth fct.

-Use hierarchical surplus 
 as error indicator.

-`Automatically' detect 
 regions of high curvature and 
 adaptively refine the points.

-Each grid point has 2d neighbours

-Add neighbour points, i.e. locally 
 refine interpolation level from l to l+1

-Criterion: e.g.  

See, e.g., Bungartz (2003), Ma & Zabaras (2008), Pflüger (2010),...

top panel: tree-like structure of sparse grid.
lower panel: locally refined sparse grid in 2D. 

II. Adaptive sparse  grids 
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Test in 2d (Movie)
Test function:

Max. Error:         
O(10-2)

Full grid:
→ O(109) points

Sparse grid:
→ 311'297 points

Adaptive sparse grid:
→ 4'411 points

Fig.: 2d test function and its corresponding grid points
after 15 refinement steps.

II. Adaptive sparse  grids 
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IRBC: Model ingredients
RECALL: WE WANT TO SOLVE HIGH-DIM MODELS 

- Use standard problem for testing comp. methods for high-dim problems. 
→ International Real Business Cycle model (IRBC) with adjustment costs

- N countries facing productivity shocks and capital adjustment costs

→ they differ wrt. productivity (stochastic and exogen.)  'a' & capital stock (endogen.)  'k' 

→ dimension of the state space / grid: dim=2N

→ one Euler equation per country plus aggregate resource constraint: 
     N+1 equations characterize equilibrium at each point

- Use time iteration to solve for the optimal policy    p: R
+

2N → R
+

N+1

- Some Models → in each country, investment is irreversible.
  installed capital cannot be consumed or moved to another country     p: R

+

2N → R
+

2N+1  

(e.g.  Den Haan et al. (2011), Malin et al. (2011))

III. Time Iteration, ASG, HPC
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Parallel time iteration/DP algorithm
-Our implementation:  
 Hybrid parallel  
(MPI & Intel TBB & GPU (CUDA/THRUST)). 

-newly generated points are 
 distributed via MPI

Solve optimizations/
nonlinear equations locally 
(e.g. IPOPT (Waechter & Biegler (2006)).

In parallel: `messy' !

→ policy from previous iteration 
    visible on all MPI processes. 
→ we have to ensure some 
     sort of `load balancing'.
→ Now a lot better with TBB

One single time-step

Brumm, Scheidegger (2014 – revise & resubmit); Brumm, Mikushin, Scheidegger, Schenk (2014 – revise & resubmit) 

III. Time Iteration, ASG, HPC
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GPU Optimizations
I) Simplify arithmetic expressions, eliminate divisions (most expensive)

ii) Eliminate duplicate computations, keeping the same byte per FLOP ratio, 
eliminate branching

iii) Parallelize function evaluation with Thrust using combined transform+reduce
 (transform_reduce)

iv) Eliminate redundant cudaMalloc/cudaFree from Thrust implementation

v) Runtime optimization: hard-code vector size into GPU kernel and pass vector elements as 
scalars, together with other kernel arguments
→ 15% perf improvement, but needs JIT-compilation
→ Stores compiled kernels onto disk  could be slower on cluster, requires singleton for MPI/threads⇒

vi) Hybrid multi-threading with Intel TBB: (N − 1) threads on CPU, 1 thread - for GPU; 
TBB balances workloads automatically with “work stealing”

vii) Vectorize CPU kernel with AVX

Brumm, Mikushin, Scheidegger, Schenk (2014 – revise & resubmit)

III. Time Iteration, ASG, HPC
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Intel® Threading Building Blocks (TBB) 

-TBB maps different threads, similar
 to OpenMP. 

-Every thread is initially assigned 
 an equal logical queue of tasks.

-However, different tasks may be 
 processed faster or slower, 
 due to differences between tasks and/or 
 compute cores

-TBB approach to work balancing: once one 
 thread runs out of tasks, “steal” a task from 
 another thread, which makes slower progress.

“hddm-solver” maps one extra thread onto GPU
→ CPU cores and GPU process interpolation tasks
together.

III. Time Iteration, ASG, HPC
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Single-node Code Optimization

~30x

Brumm,  Mikushin, Scheidegger, Schenk (2014 – revise & resubmit)

~30x on node
  GPU: 50%

III. Time Iteration, ASG, HPC

  GPU: 250%
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A Strong Scaling Example

Fig.: strong scaling of the code. 
Problem: one timestep of an 16d IRBC, fixed refinement level 5.

III. Time Iteration, ASG, HPC

nodes are equipped with an 8-core 64-bit Intel SandyBridge CPU (Intel® Xeon® E5-2670), an NVIDIA® Tesla® K20X
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Econ. Example: Results (log10)

Increase Dimension
→ errors remain 
     of same quality

Euler Errors: At optimal solution, marginal benefit of consuming one unit of output today is equal to the marginal 
benefit of investing it. Euler errors measures how much they deviate. 

III. Time Iteration, ASG, HPC
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Asset Pricing Example
- Want to study economic implications 
  of more countries in the model.

- We keep the model symmetric:
  →All countries: same exposure
      to risk (country & global shocks)

- diversification effect:
  → risks faced by each country
      become less severe as the number 
      of countries increases.
  →the countries save less 
      (lower precautionary savings)
  → lower capital stocks 

- higher mean returns:
  → Because of decreasing marginal 
       returns to capital, lower capital 
       implies higher returns.
 
  → More countries: 
      better chances to reallocate capital 
      where it is more productive and yields 
      higher returns.

III. Time Iteration, ASG, HPC
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IRBC with irreversible investment

Fig.: Capital choice of country 2 as a function of capital holding of country 1. 
All other state variables of this model are kept fixed at steady state (2N = 4d).
The 4-d policy function was interpolated on an adaptive sparse grid (ε = 0.0033).

Note: kink is (2N -1) - dimensional hypersurface in 2N - dim state space.

Capital in country 1 low:
→ investment opportunities 
    better than in country 2
→ irrev. constraint binding 
    for country 2.

Capital in country 1 high:
→ irrev. constraint binding 
    for country 1.
→ this limits transfer of resources
    to country 2.

III. Time Iteration, ASG, HPC
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Models with binding constrains:
massive speedup due to adaptivity

Tab.: Comparison of a sparse and 
adapt. sparse grid of comparable accuracy.

Fig.: 8d model with binding constraints.
model run with/without adaptive sparse grids. 
Relative error among two consecutive time-steps. 
10k points drawn from uniform distribution.

III. Time Iteration, ASG, HPC
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Summary & Conclusion

● Algorithm perfectly suited to solve high dimensional dynamic models with large amount of heterogeneity!  
(Method: Scalable & Flexible).

 
● First time adaptive sparse grids are applied to high-dimensional economic models.

● First ones to solve dynamic economic models on HPC systems with hybrid (MPI, TBB, GPU) parallelism.

● GPU can speed-up application up to 2-3x

Can now address:

● International Real Business Cycle (IRBC) Models: Exchange Rates, Global Trade Imbalances

● Dynamic Stochastic General Equilibrium (DSGE) Models: Monetary Policy, Business Cycle Fluctuations

● Overlapping Generations (OLG) Models: Demographic Change, Social Security
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Contact Details

Simon Scheidegger simon.scheidegger@uzh.ch

Johannes Brumm: johannes.brumm@uzh.ch

Dmitry Mikushin: dmitry.mikushin@usi.ch

Olaf Schenk: olaf.schenk@usi.ch 
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