
Presented by: Eri Rubin

Eri Rubin (HUJI), Ely Levy (HUJI),

Prof. Amnon Barak (HUJI), Tal Ben-Nun (HUJI)

MAPS: Optimizing Massively
Parallel Applications using
Device-Level
Memory Abstraction

• Motivation - What's the problem ?

• Maps, written by CUDA programmers for CUDA programmers

• See the syntax !

• Very little theory 

• Some technical details

• Index mapper

• Code sample

• Index mapper code sample

• Performance

Talk Outline

Motivation

• GPUs can achieve amazing acceleration for heavy compute tasks

• However getting this high performance is hard

• There are already many different tools to make development easier

• But something is missing

• After over 8 years and many projects of developing many applications, advising
on many projects and teaching numerous courses in CUDA I got tired of:

• Writing the same annoying pieces of code over and over again

• Spending many hours debugging annoying bugs

• Seeing my colleagues and students fall into the same potholes

• So I developed MAPS with the help of my colleagues at the lab

• Most software is actually memory bound (if you wrote the compute in a smart
way …)

• Memory optimizations on GPUs are not fun, and lead to the “Indexing Hell”

• These can induce hard to find bugs, and prolong development time
significantly

• Most algorithms actually use a very small set of access patterns. So
addressing this set is a feasible task.

MAPS - Fun Facts:

• Easily let a programmer utilize advanced memory optimizations without
even knowing about it !

• Remove the “Indexing Hell” by using iterators, no need to calculate
indexes at all !

• Doesn’t break the CUDA programming model, so if it stops working for
you, there is no need to rewrite the whole algorithm.

• Familiar STL like Container/Iterator interface

MAPS – Goals

template<int RAD, int BLOCK_W>

__global__ void convMAPS(const float *in, float *out, int size) {

 int x = blockIdx.x * blockDim.x + threadIdx.x;

 if (x >= size) return;

 typedef maps::Window1D<float, BLOCK_W, RAD> window1DType;

 __shared__ window1DType wnd;

 wnd.init(in, size);

 float result = 0.f;

#pragma unroll

 for (window1DType::iterator iter = wnd.begin(); iter != wnd.end(); ++iter)

 result += (*iter) * dev_convKernel[iter.id()];

 out[x] = result;

}

MAPS – small taste

• Similar patterns are used in multiple algorithms

• To validate we look at “Berkeley's parallel dwarfs”

• Berkeley's parallel dwarfs – a set of algorithmic building blocks with
which any parallel algorithm can supposedly be built.

• We found a set of access patterns that are used by these parallel dwarfs

Access patterns

Parallel Dwarfs access pattern
 Parallel Dwarf Data Structure Access Patterns Typical Example

 Dense Linear Algebra

Vector-Vector Block (1D) Dot product

Matrix-Vector Block (2D, 1D) Matrix-Vector Mult.

Matrix-Matrix Block (2D, Transposed) Matrix Mult.

 Sparse Linear Algebra
CSR/CSC Matrix Adjacency SpMV

Banded Matrix Block (1D) Banded Solver

 Spectral Methods Vector/Matrix Permutation FFT

 N-Body Methods
Array Block (1D) All pairs N-Body

Octree Traversal Barnes-Hut N-Body

 Structured Grids Grid Matrix Window Convolution

 Unstructured Grids Graph Adjacency Cloth Simulation

 Graph Traversal Graph Varies BFS

 MapReduce Varies Varies Histogram

 Combinational Logic Varies Varies CRC

 Dynamic Programming Varies Varies Needleman-Wunsch

 Backtrack/Branch-and-Bound Varies Varies A*, DFS

 Graphical Models Varies Varies HMM

 Finite State Machine Varies Varies Any FSM

Proposed Framework - MAPS

• Base on the “Memory Dwarfs”

• Using a familiar STL style Container/Iterator interface

• Hide the “Indexing Hell”

• Does not limit or hinder the developer in any way

• Maintain optimized performance

Host Memory

Local
Memory

Kernel

Host Device (GPU)

Code

Global Memory

Shared
Memory

Data
Structure

Block

Threads

Data
Structure

Local
Memory

Kernel

Naïve flow

Data
Structure

Data
Structure

Host Memory

Local
Memory

Kernel

Host Device (GPU)

Code

Global Memory

Shared
Memory

Block

Threads

Local
Memory

Kernel

Optimized flow

Data

Data
Structure

Data
Structure

Host Memory

Local
Memory

Iterator Kernel

Host Device (GPU)

Mapper

Code

Global Memory

Shared
Memory

Mapped Indices

Container

Data
Structure

Block

Threads

Data
Structure

Local
Memory

Iterator Kernel

MAPS Framework

Data
Structure

Data
Structure

int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;

int aBegin = n * BLK_SIZE * by;
int bBegin = BLK_SIZE * bx;

for (int i = 0; i < n; ++i)
{
 Csub += A[aBegin + n * ty + i] * B[bBegin + k * i + tx];
}

Matrix Multiplication Sample: Naïve

Matrix Multiplication Sample: Optimized
__shared__ float As[BLK_SIZE*BLK_SIZE];
__shared__ float Bs[(BLK_SIZE+1)*BLK_SIZE];
float Csub = 0;

for (a = wA * BLK_SIZE * blockIdx.y, b = BLK_SIZE * blockIdx.x;
 a <= wA * BLK_SIZE * blockIdx.y + wA - 1;
 a += BLK_SIZE, b += BLK_SIZE * wB)
{
 As[threadIdx.y*BLK_SIZE+threadIdx.x] = A[a + wA * threadIdx.y + threadIdx.x];
 Bs[threadIdx.y*(BLK_SIZE+1)+threadIdx.x] = B[b + wB * threadIdx.y + threadIdx.x];

 __syncthreads();

#pragma unroll
 for (int k = 0; k < BLK_SIZE; ++k){
 Csub += As[threadIdx.y*BLK_SIZE+k] * Bs[k*(BLK_SIZE+1)+threadIdx.x];
 }
 __syncthreads();
}

Matrix Multiplication Sample: MAPS
Block2D <float, BLK_SIZE> matConA;
Block2DT<float, BLK_SIZE> matConB;
matConA.init(A, m, n,As);
matConB.init(B, n, k,Bs);
Block2D <float, BLK_SIZE>::iterator matAIt;
Block2DT<float, BLK_SIZE>::iterator matBIt;

while (!matConA.isDone())
{
#pragma unroll
 for (matAIt = matConA.begin(), matBIt = matConB.begin(); matAIt != matConA.end();
 ++matAIt, ++matBIt)
 {
 Csub += (*matAIt) * (*matBIt);
 }
 matConA.nextChunk(); matConB.nextChunk();
}

Host Index Mapping

A graph has a topology which in many cases is unstructured, thus cannot be
known in compile time, yet in many cases it is fairly constant for a certain use
case.

 Naïve access from a node to its neighbors
leads to random memory access

 Yet if index locality is maintained, a group of
near by nodes will have allot of overlap with
their neighbors.

 Caching these items beforehand can
significantly reduce the overhead of random
access

Host Index Mapping

For these cases, the MAPS
framework includes the index
mapper component.

This component processes
data structures on the host to
find an optimal caching
strategy for each thread-
block.

Id Position Normal

0 x,y,z x,y,z

1 x,y,z x,y,z

2 x,y,z x,y,z

3 x,y,z x,y,z

4 x,y,z x,y,z

5 x,y,z x,y,z

6 x,y,z x,y,z

Vertex Data
Id Vert Ids Normal

0 0,1,2 x,y,z

1 2,3,0 x,y,z

2 3,4,6 x,y,z

3 4,5,6 x,y,z

4 0,6,3 x,y,z

5 3,5,2 x,y,z

6 4,5,2 x,y,z

Face Data

SpMV Sample: Host – build graph

maps::GraphMapper indexMapper(blockSize,false);
indexMapper.init(rows);

std::vector<matCell>::iterator matIt;
for (matIt = spMat.begin(); matIt != spMat.end(); ++matIt)
 indexMapper.addEdge(matIt->i,matIt->j);

indexMapper.setMaxNodeRankSize(maxNRank);

indexMapper.createIndexMap();
int sharedMemSize_con = sizeof(float)*indexMapper._MaxNumOfConstVecsInBlock;
unsigned int numPartRoundUp = maps::RoundUp(cols,512)*512;

SPmV_maps_kernel_maps <<<gridDim, blockDim, sharedMemSize_con>>> (rows, d_A_val, d_A_j_ind,
 d_A_lineStartInd, d_x, d_b, indexMapper._gpuData, cols, indexMapper._MaxNumOfConstVecsInBlock,
 numPartRoundUp);

First we need to build the graph, and create the index maps

SpMV Sample: Device – build graph

 extern __shared__ float sdata[];

 maps::Adjacency<float,false> MyGraph;

 MyGraph.init(threadIdx.x, blockDim.x, g_x ,sdata , GraphGPUData, MaxNumOfConstVecsInBlock, global_ind,
 numPartRoundUp);

 if (global_ind < N) {
 int lineStartIndex = g_A_lineStartInd[global_ind];
 int nextLineStartInd = g_A_lineStartInd[global_ind+1];

 float res=0.f;

 maps::Adjacency<float,false>::iterator gIter = MyGraph.begin();
 for (int i=lineStartIndex; i<nextLineStartInd; ++i,++gIter)
 res += g_A_val[i] * (*gIter);

 g_b[global_ind] = res;
 }

First we need to build the graph, and create the index maps

Dense Matrix Multiplication – Block 2D

0

0.5

1

1.5

2

2.5

3

64x64 128x128 256x256 512x512 1024x1024 2048x2048

R
e

la
ti

ve
 S

p
e

e
d

u
p

Matrix Size

Naive

Optimized

MAPS

Cloth Simulation - Adjacency

0

0.5

1

1.5

2

2.5

3

128x128 256x128 256x256 512x256 512x512

R
e

la
ti

ve
 S

p
e

e
d

u
p

Cloth Nodes

Naive

Optimized

MAPS

2D Convolution

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3x3 5x5 7x7 9x9 11x11 13x13

R
e

la
ti

ve
 S

p
e

e
d

u
p

Kernel Size

Naive Optimized

MAPS

Cross Platform Benchmark – Fused
Convolution + Histogram

0

0.5

1

1.5

2

2.5

3

3.5

Kepler (K40c) Maxwell (750 Ti)

R
e

la
ti

ve
 S

p
e

e
d

u
p

NPP

CUB: Global Atomics

CUB: Sorting

CUB: Shared Atomics

Fused MAPS

Conclusion

This work presented a novel framework

Defined a set of “Memory Dwarfs” based on Parallel Dwarfs

The MAPS framework creates an abstraction, exposing a familiar STL-like API

An implementation has been written and is publicly available

Future Work

Writing a port of the library over higher level languages such and C++ AMP, Python

Enhance the model to allow for even more automatic optimizations (e.g. ILP)

Integration with other libraries

Thank you

 Questions ?

Questions can be sent to:
• eri.rubin@gmail.com

• talbn@cs.huji.ac.il

Library to be published at http://www.cs.huji.ac.il/~talbn/maps

This research was partially supported by the Ministry of Science and Technology, Israel.

mailto:eri.rubin@gmail.com
mailto:talbn@cs.huji.ac.il
http://www.cs.huji.ac.il/~talbn/maps

