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INTRODUCTION
o GRACE: GPU-Accelerated Ray-Tracing for
Astrophysics

o Taranis: GRACE + Radiative Transfer (CPU and
GPU, in progress)
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MOTIVATION

Currently, radiative transfer is treated by:
Ilgnoring it
Diffusion approximation
Higher-order moments of the radiative transfer equation
Ray tracing

Usually done by post-processing

Ray tracing is the , but , solution:
naively need Nparticles(~ 128° — 512%) rays per source



ASIDE: COSMOLOGICAL SIMULATIONS

: : Smoothed Particle
Eiteores (U] Hydrodynamics (Lagrangian)

o Grid is fixed, fluid flow o SPH particles move with
determined from the flow of the fluid
neighbouring cells

o Cell determines the fluid o Fluid properties at a point

properties at its location depends (formally) on all
particles




ACCELERATION STRUCTURES

o Naively scales as
Nrays X Nparticles

o Acceleration structure:
Nrays X log Nparticles
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TREE CONSTRUCTION WITH A SPACE-FILLING

CURVE .
Order all particles o
along a 1D curve
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Assign axis-aligned bounding boxes
( ) to all nodes, starting at the

Lauterbach et al. (2009)
Warren & Salmon (1993)




THE MORTON CURVE

o Map floats (x,v) € [0,1) to
integers («',y") € [0, 2)
and interleave the bits:
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TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

1. Order all particles along a 1D curve

2. Place particles into
nodes according
to their position
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3. Assign axis-aligned bounding boxes E 9 ! 1 E ) ! 1
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TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

1. Order all particles along a 1D curve

2. Place particles into nodes according to
their position along the line

3. Assign axis-aligned
bounding boxes
(AABEBs) to all
nodes, starting at the
leaves

Karras (2012)




TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE
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TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

o In our implementation, tree
hierarchy and AABB finding
occur simultaneously

o The tree climb is iterative; each thread block
covers an (overlapping) range of leaves

o Each block independently processes a
contiguous subset of the input nodes

i-1 i i+ 1

o For 1283 particles, we can build a tree in
~20 (40) ms ‘
6(i, i + 1) =1<68(i, i - 1) = 2

Apetrei (2014)




TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

In our implementation, tree hierarchy and
AABB finding occur simultaneously

The tree climb is iterative;
each iteration adds a layer
of nodes on top of the last

Each block independently
processes a contiguous
subset of the input nodes

For 1283 particles, we can build a tree in
~20 (40) ms
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TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

o In our implementation, tree hierarchy and
AABB finding occur simultaneously

o The tree climb is iterative; each iteration adds a
layer of nodes on top of the last

o Each block independently processes a
contiguous subset of the input nodes

o For 1283 particles, we can
build a tree in ~20 (40) ms
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BVH TRAVERSAL

o Typical traversal loop:

def traverse(ray, node):
if intersect(ray, node.AABB):
if node.is_leaf():
# Hit a leaf: intersect spheres.
for sphere in node.spheres:
if intersect(ray, sphere):
# Do work/output.
else:
# Node has children.
traverse(ray, node.get left())
traverse(ray, node.get right())

traverse(ray, tree.root())




GPU BVH TRAVERSAL

Traversal with a stack: Optimizations:
1 def traverse(ray, tree): (~2 %)
2 stack.push(tree.root)
3 while not stack.empty(): (~2 X)
4 node = stack.pop()
5 if intersect(ray, node.AABB):
6 if node.is_leaf(): Packed nodes structs (64 bytes:
7 # Hit a leaf: intersect spheres. hierarchy and child AABBs)
8 for sphere in node.spheres: (~1.3 x)
9 if intersect(ray, sphere):
10 # Do work/output. Shared memory sphere caching
11 else: QV]JZ x)
12 # Node has children.
12 i:itﬁﬁi:g:zjzgi—;ﬁ:ﬁ ;) Texture fetches of node and
. . ST - sphere data (~1.1 Xx)

16 traverse(ray, tree)



ASIDE: RAY TRACING IN ASTROPHYSICS

Long characteristics Short characteristics
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GRACE TRACE ALGORITHM

TS




GRACE+TARANIS TRACE ALGORITHM

1. Output data for every
intersection:
. Trace: count per-ray hits
I Scan sum hit counts

1. Trace: output per-hit column
densities

V. Sort per-ray outputs by distance
V. Scan sum per-ray outputs

2. Result is cumulative column
density up to each intersected
particle for each ray




GRACE+TARANIS TRACE ALGORITHM

o Source-to-particle column
densities sufficient for radiative
transfer:

1. Accumulate ionization and
heating rates for each particle
(in parallel with atomics)

2. Update particles’ ionization and
temperature variables
(independently and in parallel)




PERFORMANCE

o 1283 particles in a (10 Mpc)? box at the end of hydrogen reionization (z ~ 6); comparing
to an optimized CPU code: OpenMP, SIMD ray packets and SAH-optimized BVH

o ‘CPUIGPU’: projected down the z-axis through the simulation volume, point-to-point
cumulative (5122 rays)

o ‘All intersections’: traced out from centre, all intersection data output (145,024 rays)

o ‘4 sort’: sorts all-intersections data by distance along the ray

CPU GPU GPU all GPU all

(2x 16-core AMD (1x Tesla M2090) | jntersections intersections +

Opteron 6276 (1x Tesla M2090) sort

@iy @il (1x Tesla M2090)
Rays / second 3.0x10° 1.2x10° 4.0x10° 2.1x10°
Rays / second /£ ~50 ~160 ~55 ~30

Rays /J @ TDP ~1300 ~5300 ~1800 ~960




PERFORMANCE

o This work: peak performance for all intersections, rays traced from centre

o ‘CPU’: cumulative projection/point-to-point (as in previous slide)

o ‘OptiX’: intersection counts only

GTX 670

M2090
(ECC)

CPU K20 (ECC)

(2x 16-core
AMD Opteron
6276

OptiX
(1x GTX 670)

GTX 970

@ 2.3 GHz)
3.0x10°> 4.8x10°

Rays / second N/A N/A
(inc. sort)

6.3%10°
3.3x10°

4.2x10°
2.5%10°

4.0x10°
2.1x10°

Rays / second

9.6x10°
4.5x10°




OUTLOOK
Combined GRACE with CPU radiative transfer code

Will be combined with existing GPU port

GRACE API will remain separate for use in other
projects

GRACE released under GPL within ~two months
(sooner on request — just e-mail me)



THANK YOU

Contact:
Sam Thomson, University of Edinburgh, UK ‘
spth@roe.ac.uk
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