
TARANIS: RAY TRACING RADIATIVE
TRANSFER IN SPH
Sam Thomson spth@roe.ac.uk
Eric Tittley, Martin Rüfenacht, Alex Bush

Institute for Astronomy, University of Edinburgh

INTRODUCTION
| GRACE: GPU-Accelerated Ray-Tracing for

Astrophysics

| Taranis: GRACE + Radiative Transfer (CPU and
GPU, in progress)

PHYSICAL MOTIVATION

MOTIVATION
| Currently, radiative transfer is treated by:

y Ignoring it
y Diffusion approximation
y Higher-order moments of the radiative transfer equation
y Ray tracing

| Usually done by post-processing

| Ray tracing is the most accurate, but slowest, solution:

naively need 𝑁particles(~ 1283 − 5123) rays per source

ASIDE: COSMOLOGICAL SIMULATIONS

| Grid is fixed, fluid flow
determined from
neighbouring cells

| Cell determines the fluid
properties at its location

| SPH particles move with
the flow of the fluid

| Fluid properties at a point
depends (formally) on all
particles

Grid-based (Eulerian) Smoothed Particle
Hydrodynamics (Lagrangian)

ACCELERATION STRUCTURES
| Naively scales as

𝑁rays × 𝑁particles

| Acceleration structure:
𝑁rays × log 𝑁particles
scaling
y k-d Tree
y Bounding Volume

Hierarchy (BVH)

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

1. Order all particles
along a 1D curve

2. Place particles into nodes according to
their position along the line

3. Assign axis-aligned bounding boxes
(AABBs) to all nodes, starting at the leaves

Lauterbach et al. (2009)
Warren & Salmon (1993)

THE MORTON CURVE
| Map floats 𝑥, 𝑦 ∈ 0, 1 to

integers 𝑥′, 𝑦′ ∈ [0, 2𝐸)
and interleave the bits:

1. 𝑥, 𝑦 = 0.25, 0.60

int : [0,25)

𝑥′, 𝑦′ = 7, 18
= 00111, 10010

2. key = 0100101110 = 302

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE
1. Order all particles along a 1D curve

2. Place particles into

nodes according
to their position
along the line

3. Assign axis-aligned bounding boxes
(AABBs) to all nodes, starting at the
leaves

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE
1.  Order all particles along a 1D curve

2.  Place particles into nodes according to
their position along the line

3.  Assign axis-aligned
bounding boxes
(AABBs) to all
nodes, starting at the
leaves

Karras (2012)

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE
1.  Order all particles along a 1D curve

2.  Place particles into nodes according to
their position along the line

3.  Assign axis-aligned
bounding boxes
(AABBs) to all
nodes, starting at the
leaves

Karras (2012)

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE
!  In our implementation, tree

hierarchy and AABB finding
occur simultaneously

!  The tree climb is iterative; each thread block
covers an (overlapping) range of leaves

!  Each block independently processes a
contiguous subset of the input nodes

!  For 1283 particles, we can build a tree in
~20 (40) ms

Apetrei (2014)

i" i"+"1"i"−"1"

δ(i,%i%+%1)%=%1%<%δ(i,%i%−%1)%=%2%

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE
| In our implementation, tree hierarchy and

AABB finding occur simultaneously

| The tree climb is iterative;

each iteration adds a layer
of nodes on top of the last

| Each block independently
processes a contiguous
subset of the input nodes

| For 1283 particles, we can build a tree in
~20 40 ms

Block 0 Block 1 Block 2

Block 0 Block 1 Block 2

Block 0 Block 1

Block 0 Block 1

Block 0

Block 0

Block 0

Block 0

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE
| In our implementation, tree hierarchy and

AABB finding occur simultaneously

| The tree climb is iterative; each iteration adds a

layer of nodes on top of the last

| Each block independently processes a
contiguous subset of the input nodes

| For 1283 particles, we can

build a tree in ~20 40 ms

BVH TRAVERSAL
| Typical traversal loop:

GPU BVH TRAVERSAL
| Optimizations:

y Multiple spheres in a leaf (~2 ×)

y Packet tracing (~2 ×)

y Packed nodes structs (64 bytes:

hierarchy and child AABBs)
(~1.3 ×)

y Shared memory sphere caching
(~1.2 ×)

y Texture fetches of node and
sphere data (~1.1 ×)

| Traversal with a stack:

ASIDE: RAY TRACING IN ASTROPHYSICS
| Long characteristics | Short characteristics

Rijkhorst et al. (2006), A&A, 452, 907

GRACE TRACE ALGORITHM

GRACE+TARANIS TRACE ALGORITHM
1.  Output data for every

intersection:
I.  Trace: count per-ray hits
II.  Scan sum hit counts
III.  Trace: output per-hit column

densities
IV.  Sort per-ray outputs by distance
V.  Scan sum per-ray outputs

2.  Result is cumulative column
density up to each intersected
particle for each ray

GRACE+TARANIS TRACE ALGORITHM
!  Source-to-particle column

densities sufficient for radiative
transfer:

1.  Accumulate ionization and
heating rates for each particle
(in parallel with atomics)

2.  Update particles’ ionization and
temperature variables
(independently and in parallel)

PERFORMANCE

Metric CPU
(2x 16-core AMD
Opteron 6276
@ 2.3 GHz)

GPU
(1x Tesla M2090)

GPU all
intersections
(1x Tesla M2090)

GPU all
intersections +
sort
(1x Tesla M2090)

Rays / second 3.0×105
 1.2×106
 4.0×105
 2.1×105

Rays / second / £ ~50
 ~160
 ~55
 ~30

Rays / J @ TDP ~1300
 ~5300
 ~1800
 ~960

!  1283 particles in a (10 Mpc)3 box at the end of hydrogen reionization (z ~ 6); comparing
to an optimized CPU code: OpenMP, SIMD ray packets and SAH-optimized BVH

!  ‘CPU/GPU’: projected down the z-axis through the simulation volume, point-to-point
cumulative (5122 rays)

!  ‘All intersections’: traced out from centre, all intersection data output (145,024 rays)
!  ‘+ sort’: sorts all-intersections data by distance along the ray

PERFORMANCE

Metric CPU
(2x 16-core
AMD Opteron
6276
@ 2.3 GHz)

OptiX
(1x GTX 670)

M2090
(ECC)

GTX 670 K20 (ECC) GTX 970

Rays / second 3.0×105
 4.8×105
 4.0×105
 4.2×105
 6.3×105
 9.6×105

Rays / second
(inc. sort)

N/A N/A 2.1×105
 2.5×105
 3.3×105
 4.5×105

!  This work: peak performance for all intersections, rays traced from centre

!  ‘CPU’: cumulative projection/point-to-point (as in previous slide)

!  ‘OptiX’: intersection counts only

OUTLOOK
! Combined GRACE with CPU radiative transfer code

! Will be combined with existing GPU port

! GRACE API will remain separate for use in other
projects

! GRACE released under GPL within ~two months
(sooner on request – just e-mail me)

THANK YOU
Contact:
•  Sam Thomson, University of Edinburgh, UK
•  spth@roe.ac.uk

REFERENCES
!  Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., &

Manocha, D. (2009). “Fast BVH Construction on GPUs”.
Computer Graphics Forum, 28(2), 375–384.

!  Warren, M., & Salmon, J. (1993). “A parallel hashed oct-tree n-
body algorithm.” In Proceedings of the 1993 ACM/IEEE
Conference on Supercomputing, 12–21. New York, NY, USA:
ACM.

!  Karras, T. (2012). “Maximizing Parallelism in the Construction of
BVHs, Octrees, and K-d Trees.” In Proceedings of the Fourth
ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics, 33-37.

!  Apetrei, C. (2014) “Fast and Simple Agglomerative LBVH
Construction.” In Computer Graphics and Visual Computing
(CGVC).

