TARANIS: RAY TRACING RADIATIVE
® TRANSFER IN SPH

. Sam Thomson spth@roe.ac.uk

o Eric Tittley, Martin Riifenacht, Alex Bush

Institute for Astronomy, University of Edinburgh

INTRODUCTION
o GRACE: GPU-Accelerated Ray-Tracing for
Astrophysics

o Taranis: GRACE + Radiative Transfer (CPU and
GPU, in progress)

Dark Energy
Accelerated Expansion

Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.
Inflation B 0N ol X M. sare | S
Q - . :‘:-_, :‘
Fluctuation v

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

MOTIVATION

Currently, radiative transfer is treated by:
Ilgnoring it
Diffusion approximation
Higher-order moments of the radiative transfer equation
Ray tracing

Usually done by post-processing

Ray tracing is the , but , solution:
naively need Nparticles(~ 128° — 512%) rays per source

ASIDE: COSMOLOGICAL SIMULATIONS

: : Smoothed Particle
Eiteores (U] Hydrodynamics (Lagrangian)

o Grid is fixed, fluid flow o SPH particles move with
determined from the flow of the fluid
neighbouring cells

o Cell determines the fluid o Fluid properties at a point

properties at its location depends (formally) on all
particles

ACCELERATION STRUCTURES

o Naively scales as
Nrays X Nparticles

o Acceleration structure:
Nrays X log Nparticles

scaling
e k-d Tree

 Bounding Volume
Hierarchy (BVH)

/
\

/

TREE CONSTRUCTION WITH A SPACE-FILLING

CURVE .
Order all particles o
along a 1D curve

[¢ e

Place particles into according to
their position along the line

Assign axis-aligned bounding boxes
() to all nodes, starting at the

Lauterbach et al. (2009)
Warren & Salmon (1993)

THE MORTON CURVE

o Map floats (x,v) € [0,1) to
integers («',y") € [0, 2)
and interleave the bits:

1. (,v) = (0.25,0.60)

int:[02%) |
> (', y") = (7,18)
= (00111,10010)

> key = 0100101110 = 302

N ' — | j_i
NSNS S e
=
i\ N S == =
SE S BREaE =S ==\
e =\ SN SS
= - EREEER\SE
SS= NS B
S~ = - R = . R
~ e -
- =~ = e~

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

1. Order all particles along a 1D curve

2. Place particles into
nodes according
to their position

along the line i 5 i .
3. Assign axis-aligned bounding boxes E 9 ! 1 E) ! 1
(AABEs) to all nodes, starting at the i I i
leaves
o—© —@ —0—0——0—0
(% 0 o 0 0 1 1 1 1
0 2 1

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

1. Order all particles along a 1D curve

2. Place particles into nodes according to
their position along the line

3. Assign axis-aligned
bounding boxes
(AABEBs) to all
nodes, starting at the
leaves

Karras (2012)

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

1. Order all particles along a 1D curve

2. Place particles into nodes according to
their position along the line

3. Assign axis-aligned
bounding boxes
(AABEBs) to all
nodes, starting at the
leaves

Karras (2012)

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

o In our implementation, tree
hierarchy and AABB finding
occur simultaneously

o The tree climb is iterative; each thread block
covers an (overlapping) range of leaves

o Each block independently processes a
contiguous subset of the input nodes

i-1 i i+ 1

o For 1283 particles, we can build a tree in
~20 (40) ms ‘
6(i, i + 1) =1<68(i, i - 1) = 2

Apetrei (2014)

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

In our implementation, tree hierarchy and
AABB finding occur simultaneously

The tree climb is iterative;
each iteration adds a layer
of nodes on top of the last

Each block independently
processes a contiguous
subset of the input nodes

For 1283 particles, we can build a tree in
~20 (40) ms

S A ‘

Block O ‘ Block 1 ‘ Block 2

padhadSnmndg

Block O Block 1 Block 2

padadSandny

Block 0 Block 1

~

Block 0 ‘ Block 1

Block O

Block O

Block O

TREE CONSTRUCTION WITH A SPACE-FILLING
CURVE

o In our implementation, tree hierarchy and
AABB finding occur simultaneously

o The tree climb is iterative; each iteration adds a
layer of nodes on top of the last

o Each block independently processes a
contiguous subset of the input nodes

o For 1283 particles, we can
build a tree in ~20 (40) ms

CONN OV B WM

BVH TRAVERSAL

o Typical traversal loop:

def traverse(ray, node):
if intersect(ray, node.AABB):
if node.is_leaf():
Hit a leaf: intersect spheres.
for sphere in node.spheres:
if intersect(ray, sphere):
Do work/output.
else:
Node has children.
traverse(ray, node.get left())
traverse(ray, node.get right())

traverse(ray, tree.root())

GPU BVH TRAVERSAL

Traversal with a stack: Optimizations:
1 def traverse(ray, tree): (~2 %)
2 stack.push(tree.root)
3 while not stack.empty(): (~2 X)
4 node = stack.pop()
5 if intersect(ray, node.AABB):
6 if node.is_leaf(): Packed nodes structs (64 bytes:
7 # Hit a leaf: intersect spheres. hierarchy and child AABBs)
8 for sphere in node.spheres: (~1.3 x)
9 if intersect(ray, sphere):
10 # Do work/output. Shared memory sphere caching
11 else: QV]JZ x)
12 # Node has children.
12 i:itﬁﬁi:g:zjzgi—;ﬁ:ﬁ ;) Texture fetches of node and
. . ST - sphere data (~1.1 Xx)

16 traverse(ray, tree)

ASIDE: RAY TRACING IN ASTROPHYSICS

Long characteristics Short characteristics

Qa8 SRS NV

r A
N ?

- ———— -~

s / L RN

Rijkhorst et al. (2006), A&A, 452, 907

GRACE TRACE ALGORITHM

TS

GRACE+TARANIS TRACE ALGORITHM

1. Output data for every
intersection:
. Trace: count per-ray hits
I Scan sum hit counts

1. Trace: output per-hit column
densities

V. Sort per-ray outputs by distance
V. Scan sum per-ray outputs

2. Result is cumulative column
density up to each intersected
particle for each ray

GRACE+TARANIS TRACE ALGORITHM

o Source-to-particle column
densities sufficient for radiative
transfer:

1. Accumulate ionization and
heating rates for each particle
(in parallel with atomics)

2. Update particles’ ionization and
temperature variables
(independently and in parallel)

PERFORMANCE

o 1283 particles in a (10 Mpc)? box at the end of hydrogen reionization (z ~ 6); comparing
to an optimized CPU code: OpenMP, SIMD ray packets and SAH-optimized BVH

o ‘CPUIGPU’: projected down the z-axis through the simulation volume, point-to-point
cumulative (5122 rays)

o ‘All intersections’: traced out from centre, all intersection data output (145,024 rays)

o ‘4 sort’: sorts all-intersections data by distance along the ray

CPU GPU GPU all GPU all

(2x 16-core AMD (1x Tesla M2090) | jntersections intersections +

Opteron 6276 (1x Tesla M2090) sort

@iy @il (1x Tesla M2090)
Rays / second 3.0x10° 1.2x10° 4.0x10° 2.1x10°
Rays / second /£ ~50 ~160 ~55 ~30

Rays /J @ TDP ~1300 ~5300 ~1800 ~960

PERFORMANCE

o This work: peak performance for all intersections, rays traced from centre

o ‘CPU’: cumulative projection/point-to-point (as in previous slide)

o ‘OptiX’: intersection counts only

GTX 670

M2090
(ECC)

CPU K20 (ECC)

(2x 16-core
AMD Opteron
6276

OptiX
(1x GTX 670)

GTX 970

@ 2.3 GHz)
3.0x10°> 4.8x10°

Rays / second N/A N/A
(inc. sort)

6.3%10°
3.3x10°

4.2x10°
2.5%10°

4.0x10°
2.1x10°

Rays / second

9.6x10°
4.5x10°

OUTLOOK
Combined GRACE with CPU radiative transfer code

Will be combined with existing GPU port

GRACE API will remain separate for use in other
projects

GRACE released under GPL within ~two months
(sooner on request — just e-mail me)

THANK YOU

Contact:
Sam Thomson, University of Edinburgh, UK ‘
spth@roe.ac.uk

REFERENCES

Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., &
Manocha, D. (2009). “Fast BVH Construction on GPUs".
Computer Graphics Forum, 28(2), 375—-384.

Warren, M., & Salmon, J. (1993). “A parallel hashed oct-tree n-
body algorithm.” In Proceedings of the 1993 ACM/IEEE
C(o:nference on Supercomputing, 12—21. New York, NY, USA:
ACM.

Karras, T. (2012). “Maximizing Parallelism in the Construction of
BVHs, Octrees, and K-d Trees.” In Proceedings of the Fourth

ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics, 33-37.

Apetrei, C. (2014) “Fast and Simple Agglomerative LBVH
Construction.” In Computer Graphics and Visual Computing
(CGVC).

