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INTRODUCTION 
| GRACE: GPU-Accelerated Ray-Tracing for 

Astrophysics 
 

| Taranis: GRACE + Radiative Transfer (CPU and 
GPU, in progress) 



PHYSICAL MOTIVATION 



MOTIVATION 
| Currently, radiative transfer is treated by: 

y Ignoring it 
y Diffusion approximation 
y Higher-order moments of the radiative transfer equation 
y Ray tracing 

 
| Usually done by post-processing 

 
| Ray tracing is the most accurate, but slowest, solution: 

naively need 𝑁particles(~ 1283  − 5123) rays per source 



ASIDE: COSMOLOGICAL SIMULATIONS 

| Grid is fixed, fluid flow 
determined from 
neighbouring cells 
 

| Cell determines the fluid 
properties at its location 

| SPH particles move with 
the flow of the fluid 

 
 

| Fluid properties at a point 
depends (formally) on all 
particles 

Grid-based (Eulerian) Smoothed Particle 
Hydrodynamics (Lagrangian) 



ACCELERATION STRUCTURES 
| Naively scales as 

𝑁rays × 𝑁particles 
 

| Acceleration structure: 
𝑁rays × log 𝑁particles 
scaling 
y k-d Tree 
y Bounding Volume 

Hierarchy (BVH) 



TREE CONSTRUCTION WITH A SPACE-FILLING 
CURVE 

1. Order all particles 
along a 1D curve 
 

2. Place particles into nodes according to 
their position along the line 

 

3. Assign axis-aligned bounding boxes 
(AABBs) to all nodes, starting at the leaves 

 

Lauterbach et al. (2009) 
Warren & Salmon (1993) 
 



THE MORTON CURVE 
| Map floats 𝑥, 𝑦 ∈ 0, 1   to 

integers 𝑥′, 𝑦′ ∈ [0, 2𝐸 )  
and interleave the bits: 

 
1.  𝑥, 𝑦 =  0.25, 0.60  

 
int : [0,25)

𝑥′, 𝑦′ = 7, 18  
= 00111, 10010  

 
2. key = 0100101110 = 302 



TREE CONSTRUCTION WITH A SPACE-FILLING 
CURVE 
1. Order all particles along a 1D curve 

 
2. Place particles into 

nodes according 
to their position 
along the line 
 

3. Assign axis-aligned bounding boxes 
(AABBs) to all nodes, starting at the 
leaves 

 



TREE CONSTRUCTION WITH A SPACE-FILLING 
CURVE 
1.  Order all particles along a 1D curve 

2.  Place particles into nodes according to 
their position along the line 

3.  Assign axis-aligned 
bounding boxes 
(AABBs) to all 
nodes, starting at the 
leaves 

Karras (2012) 
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TREE CONSTRUCTION WITH A SPACE-FILLING 
CURVE 
!  In our implementation, tree 

hierarchy and AABB finding 
occur simultaneously 

!  The tree climb is iterative; each thread block 
covers an (overlapping) range of leaves 

!  Each block independently processes a 
contiguous subset of the input nodes 

!  For 1283 particles, we can build a tree in 
~20 (40) ms 

Apetrei (2014) 
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TREE CONSTRUCTION WITH A SPACE-FILLING 
CURVE 
| In our implementation, tree hierarchy and 

AABB finding occur simultaneously 

 
| The tree climb is iterative; 

each iteration adds a layer 
of nodes on top of the last 
 

| Each block independently 
processes a contiguous 
subset of the input nodes 
 

| For 1283 particles, we can build a tree in 
~20 40  ms 
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TREE CONSTRUCTION WITH A SPACE-FILLING 
CURVE 
| In our implementation, tree hierarchy and 

AABB finding occur simultaneously 

 
| The tree climb is iterative; each iteration adds a 

layer of nodes on top of the last 

 

| Each block independently processes a 
contiguous subset of the input nodes 

 
| For 1283 particles, we can 

build a tree in ~20 40  ms 



BVH TRAVERSAL 
| Typical traversal loop: 



GPU BVH TRAVERSAL 
| Optimizations: 

 
y Multiple spheres in a leaf (~2 ×) 

 
y Packet tracing (~2 ×) 

 
y Packed nodes structs (64 bytes: 

hierarchy and child AABBs) 
(~1.3 ×) 
 

y Shared memory sphere caching 
(~1.2 ×) 
 

y Texture fetches of node and 
sphere data (~1.1 ×) 

 

| Traversal with a stack: 



ASIDE: RAY TRACING IN ASTROPHYSICS 
| Long characteristics | Short characteristics 

Rijkhorst et al. (2006), A&A, 452, 907 



GRACE TRACE ALGORITHM 



GRACE+TARANIS TRACE ALGORITHM 
1.  Output data for every 

intersection: 
I.  Trace: count per-ray hits 
II.  Scan sum hit counts 
III.  Trace: output per-hit column 

densities 
IV.  Sort per-ray outputs by distance 
V.  Scan sum per-ray outputs 

2.  Result is cumulative column 
density up to each intersected 
particle for each ray 



GRACE+TARANIS TRACE ALGORITHM 
!  Source-to-particle column 

densities sufficient for radiative 
transfer: 

1.  Accumulate ionization and 
heating rates for each particle 
(in parallel with atomics) 

2.  Update particles’ ionization and 
temperature variables 
(independently and in parallel) 



PERFORMANCE 

Metric CPU 
(2x 16-core AMD 
Opteron 6276 
@ 2.3 GHz) 

GPU 
(1x Tesla M2090) 

GPU all 
intersections 
(1x Tesla M2090) 

GPU all 
intersections + 
sort 
(1x Tesla M2090) 

Rays / second 3.0×105
 1.2×106
 4.0×105
 2.1×105

Rays / second  / £ ~50
 ~160
 ~55
 ~30

Rays / J @ TDP ~1300
 ~5300
 ~1800
 ~960


!  1283 particles in a (10 Mpc)3 box at the end of hydrogen reionization (z ~ 6); comparing 
to an optimized CPU code: OpenMP, SIMD ray packets and SAH-optimized BVH 

!  ‘CPU/GPU’: projected down the z-axis through the simulation volume, point-to-point 
cumulative (5122 rays) 

!  ‘All intersections’: traced out from centre, all intersection data output (145,024 rays) 
!  ‘+ sort’: sorts all-intersections data by distance along the ray 



PERFORMANCE 

Metric CPU 
(2x 16-core 
AMD Opteron 
6276 
@ 2.3 GHz) 

OptiX 
(1x GTX 670) 

M2090 
(ECC) 

GTX 670 K20 (ECC) GTX 970 

Rays / second 3.0×105
 4.8×105
 4.0×105
 4.2×105
 6.3×105
 9.6×105

Rays / second 
(inc. sort) 

N/A N/A 2.1×105
 2.5×105
 3.3×105
 4.5×105


!  This work: peak performance for all intersections, rays traced from centre 

!  ‘CPU’: cumulative projection/point-to-point (as in previous slide) 

!  ‘OptiX’: intersection counts only 



OUTLOOK 
! Combined GRACE with CPU radiative transfer code 

! Will be combined with existing GPU port 

! GRACE API will remain separate for use in other 
projects 

! GRACE released under GPL within ~two months 
(sooner on request – just e-mail me) 



THANK YOU 
Contact: 
•  Sam Thomson, University of Edinburgh, UK 
•  spth@roe.ac.uk 
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