
Implementing Radar 

Algorithms on CUDA 

Hardware
Pietro Monsurró, Alessandro Trifiletti, Francesco Lannutti

Dipartimento di Ingegneria dell’Informazione, Elettronica e delle 

Telecomunicazioni (DIET)

Università di Roma “Sapienza”, Roma, Italia



Radar signal processing

Beam-forming Doppler-Range Search Radar



Advantages of GPUs

• Massive computing power

• TeraFLOPS

• Moore’s Law

• Large device memory bandwidth

• Hundreds of GB/s

• C programming

• Fast compilation

• Fast prototyping



Disadvantages of GPUs

• Latency

•Require parallel algorithms

• Identical operations for each block

• Coalesced memory access

•PCIe bandwidth

• PCIe bus is a bottleneck (8GB/s)



Kernel #1 – Mixing & APC (1/3)

• IF input

• 16 short int 80MS/s vectors of 256K elements

• BF output: 

• 16 complex float at 10MS/s (32K elements)

• Performs casting to float, mixing, low-pass 

filtering and down-sampling, amplitude & phase 

correction in one kernel



Kernel #1 – Mixing & APC (2/3)

� ��� � �������� � ����������� � ����������� � �������
��� � � ���	�	�
	�

���

��� � � ���������
�

�
��

�	�

� � �����������
�

�
��

�	�

� � �������
��

�

�
��

�	�

� � �����������
�

�
��

�	�

�

� � ���������
�

�
��

�	�

� � �������
��

�

�
��

�	�

�	 � �����������
�

�
��

�	�

� � �����������
�

�
��

�	�

��
�
≡ �����



Kernel #1 – Mixing & APC (3/3)

• 8:1 multirate filter

• Polyphase architecture

• Input IF is �� 4⁄

• Mixing by multiplying by 1,0,�1 embedded in 

the polyphase filter

• Iterations on nearby inputs

• Shared memory for inputs

• Filter and correction terms are constant

• Constant memory for coefficients



Kernel #2 – Compression (1/4)

• Performs complex matched filtering with the 

complex coefficients of the BF transmitted pulse

• The pulse is 100 samples long

• 10MHz chirp waveform

• Length increases process gain and processing time

• Filter coefficients in Constant memory

• Shared memory used to store inputs



Kernel #2 – Compression (2/4)

• Simplified benchmark for TD-FIR optimization

• 2M x 10 points are filter through a 19-tap filter

• All processing is real

• Results:

• Simple implementation: 16.5ms

• Using local TMP variable: 15.2ms

• Using Constant memory: 7.1ms

• Using Shared memory: 2.4ms

• L1/Shared Memory bandwidth is limiting factor



Kernel #2 – Compression (3/4)

• Time-domain processing faster than frequency-

domain processing

• Frequency-domain methods should be faster for 

long filters

• TD: � � � � complex products (90K)

• FD: 2� log�� � � complex products (21K)



Kernel #2 – Compression (4/4)

• What’s wrong with the FD approach?

• 16 channels, 2048 points, 100 taps

• Total time: 44us vs 53us

• Memory transfers take 1.5us @190GB/s

• 2 vs 6 transfers

• Higher utilization

• Compute: 55% vs 15% (25%)

• Memory: 85% vs 25% (35%)



Kernel #3 – Beam Forming (1/2)

� �
2�

�
sin 	

�� � � � �� � ���������

�����

�	




Kernel #3 – Beam Forming (2/2)

• Beam-forming rotates, scales and sums 

the receivers’ outputs to form a directional 

beam

• There are 16 antennas and 16 beams 

which are processed in parallel

• The rotation matrix is stored in the 

Constant memory 

• No sin ∙ and cos ∙ are computed



Kernel #4 – Doppler/Range (1/3)

∆� 
 ���
2�

�
∆� 


2�

�



Kernel #4 – Doppler/Range (2/3)

• Each target has its Doppler shift and delay, which 

are related to its speed and distance

• The Doppler/Range analysis is a series of time-

shifted FFTs

• Each FFT has 32 points

• There are 1,000 FFTs for each of the 16 beams.

• The NVIDIA cuFFT library is used



Kernel #4 – Doppler/Range (3/3)

• The input of each 32-points FFT in one beam has 

a stride of 1,000 over a vector of 32,000 points

• cufftPlanMany() is used

• The Plan is iteratively launched 16 times, 

performing 1,000 32-points FFT each

• From CUDA 5.0 to CUDA 6.5, this kernel has 

slowed down from 150μs to 170μs



Kernel #5 – CFAR processing

• CFAR processing estimates the noise 

around the target by range and/or Doppler 

averaging of nearby cells

• It is used to distinguish a true target from 

its surrounding noise

• It has not been implemented efficiently



Asynchronous operations

• Memory operations on the PCIe bus can be 

performed in parallel with GPU processing

• Asynchronous streams

• Require synchronization barriers

• Can enhance throughput up to 100%

• Cannot enhance latency



Constant and Shared memories

• Accesses to main memory has large 

bandwidth (200GB/s) but large latency 

(500 clock cycles)

• Constant coefficients can be stored in the 

fast Constant memory to reduce accesses 

to memory

• Data which is used often in one kernel can 

be stored in the Shared memory



Algorithmic optimization

• Most functions can be performed with different 

algorithms:

• Time-domain or frequency-domain

• Poly-phase

• More functions per kernel

• BLOCK / THREAD organization

• “Empirical” optimization



Parametric coding

• The code is heavily parametric

• Number of channels, beams, pulses and bins

• Pulses’ length and shape

• IF-to-BF down-sampling

• CFAR: number of range/bin averages

• Some parameters may be updated between 

frames by writing the Constant memory

• To Be Done

• KBs



Performance (on GTX680)
Operation Time (µs) (5.0) Time (µs) (6.5)

DDC 220 200

PCF 620 430

DBF 300 280

FFT 150 170

CFAR 460 460

TOTAL (proc) 1,770 1,520

LOAD 1,300 1,300

STORE 330 330

TOTAL (mem) 1,630 1,630



External synchronization



Conclusion (1/2)

• Most of the algorithms in a beam-forming 

pulse/Doppler radar can be parallelized

• The PCIe bus is the bottleneck

• A tracking radar may be less efficiently 

implemented

• (Low dimensional) adaptive filters may 

be harder to parallelize



Conclusion (2/2)

• The GPU need to work on a PC and together with 

a Data Acquisition Board (DAQ)

• 16 x 80MSps ADCs, short int data: 2.56GB/s

• Ruggedization is required in a real system

• Thermal & mechanical shocks

• Electrical & Electromagnetic shocks

• Environmental shocks

• Ruggedized GPU SBCs are commercially available


