
Avoiding Shared Memory Bank Conflicts in Rate 

Conversion Filtering 
Mrugesh Gajjar 

Technical Expert 

Siemens Corporate Technology, India 

© 2015 Siemens. All Rights Reserved. 

GTC2015: S5282 Wednesday 10:00 am 

NVIDIA GPU Technology Conference     

March 18, 2015 

San José, California 

Ismayil Güracar 

Senior Key Expert 

Siemens Medical Solutions, USA Inc. 

Ultrasound Business Unit 



Restricted © Siemens AG 2013 All rights reserved.  
Page 2 

2 

ACUSON SC2000™ Ultrasound System 

Signal Processing Pipeline 

© 2015 Siemens. All Rights Reserved. 



Restricted © Siemens AG 2013 All rights reserved.  
Page 3 

3 © 2015 Siemens. All Rights Reserved. 

Image downsampling 

Image downsampling is about resizing an image to 

smaller size in one or more dimension. 

 

Referred by name ‘rate conversion’ in applications 

where data is of streaming nature such as audio. 

 

Naïve downsampling by integer factor M: Select every 

M’th sample and drop the rest. It can result in aliasing. 
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Rate conversion filtering 

To remove aliasing: First low 

pass filter the data and then 

skip samples. 

 

Filtering ranges for adjacent 

output pixels overlap. 

 

Use shared memory to 

improve performance. 
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float Accum=0;  
smIndex = threadIdx.x * decimationFactor; 
#pragma unroll     

for (int k = 0; k < filterTaps; k++)  
{  
  float C = d_coeff[k];  
  Accum = Accum + C * sharedMem[k + smIndex];  
} 

No. of banks=32 

decimationFactor=8 

k=0 

Shared Memory 

Bank conflicts 

Rate conversion filtering loop 
Access pattern within a warp 
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float Accum=0;  
smIndex = threadIdx.x * decimationFactor; 
#pragma unroll     

for (int k = 0; k < filterTaps; k++)  
{  
  float C = d_coeff[k];  
  Accum = Accum + C * sharedMem[k + smIndex];  
} 

No. of banks=32 

decimationFactor=8 

k=2 

Rate conversion filtering loop 
Access pattern within a warp 
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No. of banks=32 

decimationFactor=9 

k=0 

Rate conversion filtering loop 
Access pattern for decimation factor 9 

 
Stride=9 

float Accum=0;  
smIndex = threadIdx.x * decimationFactor; 
#pragma unroll     

for (int k = 0; k < filterTaps; k++)  
{  
  float C = d_coeff[k];  
  Accum = Accum + C * sharedMem[k + smIndex];  
} 

 Shared memory banks                              
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float Accum=0;  
smIndex = threadIdx.x * decimationFactor; 
#pragma unroll     

for (int k = 0; k < filterTaps; k++)  
{  
  int strided_k = (k + threadIdx.x) % filterTaps; 
  float C = d_coeff[strided_k];  
  Accum = Accum + C * sharedMem[strided_k + smIndex];  
} 

filterTaps=32 

No. of banks=32 

decimationFactor=8 

k=0 

A solution 
Dot product can be performed in any order 

 
Stride=9 

Thread i starts summing with 

index i in the dot product 

(convolution sum) 

 Shared memory banks                              
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There will be bank conflicts if No. of banks (NB) and 

Downsampling factor (DF) shares a factor.  

 

Shared memory BW utilization reduces by that factor. 

 

If NB and DF are co-prime there will not be bank conflicts. 

 

Solution on previous slide: works as if we made DF=9, thus 

becoming co-prime with NB=32 

Analysis 
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When NB is a power of 2, all even DF will result in bank conflicts. 

 

Any odd number is co-prime to a power of 2. So, this solution will work.  

float Accum=0;  
smIndex = threadIdx.x * decimationFactor; 
#pragma unroll     

for (int k = 0; k < filterTaps; k++)  
{  
  int strided_k = (k + threadIdx.x) % filterTaps; 
  float C = d_coeff[strided_k];  
  Accum = Accum + C * sharedMem[strided_k + smIndex];  
} 

Two issues can hurt 

performance (especially for 

NVIDIA GPUs): 

 

% operator in loop and 

 

Slower access of coefficients due 

to divergent access in constant 

memory 

Analysis (contd.) 
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The performance actually drops for almost all decimation factors. 

Reasons:  

1) Costly % operator computation 

2) Threads read different coefficient locations, not allowing efficient broadcast. 

Performance result on Quadro 4000 (Fermi) 

Basic striding using % operator 

Input size: 4096 x 256, float4 samples  Input size: 4194304 x 1, float samples 
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Performance result on Quadro K2000 (Kepler) 

Basic striding using % operator 

Input size: 4096 x 256, float4 samples  Input size: 4194304 x 1, float samples 

Similar behavior. 

However, slowdowns are much lower in case of float4 samples, as the cost of % operator is 

diluted by more compute work per sample. 
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Can we do better? 
Permutation scrambling 

iweight = (threadIdx.x & 0x18) >> 2; 
fweight0 = 1.0 * (iweight == 0); 
fweight1 = 1.0 * (iweight == 2); 
fweight2 = 1.0 * (iweight == 4); 
fweight3 = 1.0 * (iweight == 6); 
Accum = 0; 
for (k = 0; k < filterTaps; k += 8)  
{  

C0 = C[k]; 
C1 = C[k+1]; 
C2 = C[k+2]; 
C3 = C[k+3]; 
C4 = C[k+4]; 
C5 = C[k+5]; 
C6 = C[k+6]; 
C7 = C[k+7]; 
n = k + threadIdx.x * decimationFactor; 
X0 = sharedMem[n + (0 ^ iweight)]; 
X1 = sharedMem[n + (1 ^ iweight)]; 
X2 = sharedMem[n + (2 ^ iweight)]; 
X3 = sharedMem[n + (3 ^ iweight)]; 
X4 = sharedMem[n + (4 ^ iweight)]; 
X5 = sharedMem[n + (5 ^ iweight)]; 
X6 = sharedMem[n + (6 ^ iweight)]; 
X7 = sharedMem[n + (7 ^ iweight)]; 

       Accum = Accum +  
       (C0*X0+C1*X1+C2*X2+C3*X3 + C4*X4+C5*X5+C6*X6+C7*X7) * fweight0 + 
       (C0*X2+C1*X3+C2*X0+C3*X1 + C4*X6+C5*X7+C6*X4+C7*X5) * fweight1 + 
       (C0*X4+C1*X5+C2*X6+C3*X7 + C4*X0+C5*X1+C6*X2+C7*X3) * fweight2 + 
       (C0*X6+C1*X7+C2*X4+C3*X5 + C4*X2+C5*X3+C6*X0+C7*X1) * fweight3 ; 
} 

Within a tile: Load all 

coefficients sequentially in 

registers beforehand 

Tile the convolution loop 

Load input from shared memory 

in scrambled manner using a 

different permutation per group of 

threads 

Divide a warp into 4 

groups of threads 

Combine the co-efficients and 

shared memory inputs according to 

the permutation  
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Permutation scrambling 

Shared memory access locations within a warp, within a tile 

Threads 0 .. 7 

Threads 8 .. 15 

Threads 16 .. 23 

Threads 24 .. 31 

0 1 2 3 4 5 6 7 

0 1 2 3 4 5 6 7 

0 1 2 3 4 5 6 7 

0 1 2 3 4 5 6 7 

0 1 2 3 4 5 6 7 

2 3 0 1 6 7 4 5 

4 5 6 7 0 1 2 3 

6 7 4 5 2 3 0 1 

Before After 

Time steps Time steps 
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Performance result on Quadro 4000 (Fermi) 

Permutation scrambling 

Input size: 4096 x 256, float4 samples Input size: 4194304 x 1, float samples 

Performance improves for all even 

downsampling factors 

 

Speedups: 1.18x to 2.51x 

Performance only improves for higher amount 

of bank conflicts. E.g., DF=4,8,12,16 

 

Speedups: 0.84x to 2.95x 
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Performance result on Quadro K2000 (Kepler) 

Permutation scrambling 

Input size: 4096 x 256, float4 samples  Input size: 4194304 x 1, float samples 

Performance improves for all even 

downsampling factors 

 

Speedups: 1.10x to 2.63x 

Performance improves for all even 

downsampling factors 

 

Speedups: 1.27x to 2.66x 
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Performance result on Quadro K2200 (Maxwell) 

Permutation scrambling 

Input size: 4096 x 256, float4 samples  Input size: 4194304 x 1, float samples 

Performance improves for all even 

downsampling factors except 14 

 

Speedups: 0.97x to 1.65x 

Performance improves for all even 

downsampling factors 

 

Speedups: 1.11x to 4.15x 
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Correlation between Speedups and DF with 

Permutation scrambling (4096 x 256 x float4) 

Downsampling 

factor (DF) 

Theoretical 

shared 

memory 

BW loss 

Quadro 

4000 

(Fermi) 

Speedup 

Quadro 

K2000 

(Kepler) 

Speedup 

Quadro 

K2200 

(Maxwell) 

Speedup 

2 2x 1.30x 1.10x 1.02x 

4 4x 2.15x 1.40x 1.54x 

6 2x 1.32x 1.28x 1.08x 

8 8x 2.51x 1.68x 1.65x 

10 2x 1.21x 1.22 1.01x 

12 4x 1.53x 2.10x 1.22x 

14 2x 1.18x 1.30x 0.97x 

16 16x 2.00x 2.63x 1.25x 

Consistently higher 

speedups for 

DF=4,8,12,16 because 

bandwidth loss was 4x 

or more 
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Correlation between Speedups and DF with 

Permutation scrambling (4194304 x 1 x float) 

Downsampling 

factor (DF) 

Theoretical 

shared 

memory 

BW loss 

Quadro 

4000 

(Fermi) 

Speedup 

Quadro 

K2000 

(Kepler) 

Speedup 

Quadro 

K2200 

(Maxwell) 

Speedup 

2 2x 0.84x 1.35x 1.11x 

4 4x 1.07x 1.79x 1.53x 

6 2x 0.90x 1.48x 1.19x 

8 8x 1.77x 2.25x 2.73x 

10 2x 0.92x 1.30x 1.27x 

12 4x 1.22x 1.89x 1.68x 

14 2x 1.01x 1.27x 1.18x 

16 16x 2.95x 2.66x 4.15x 

Consistently higher 

speedups for 

DF=4,8,12,16 because 

bandwidth loss was 4x 

or more 
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Summary & next steps 

The ideas presented are quite general and applicable for other GPUs too. 

 

Characterize performance on Intel, AMD GPUs 

 

General solution for any number of banks 

 

Explore fractional rate conversion, 2D filters, effects of ILP and data item size 
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Thank you for your attention, 

Questions? 


