
Avoiding Shared Memory Bank Conflicts in Rate

Conversion Filtering
Mrugesh Gajjar

Technical Expert

Siemens Corporate Technology, India

© 2015 Siemens. All Rights Reserved.

GTC2015: S5282 Wednesday 10:00 am

NVIDIA GPU Technology Conference

March 18, 2015

San José, California

Ismayil Güracar

Senior Key Expert

Siemens Medical Solutions, USA Inc.

Ultrasound Business Unit

Restricted © Siemens AG 2013 All rights reserved.
Page 2

2

ACUSON SC2000™ Ultrasound System

Signal Processing Pipeline

© 2015 Siemens. All Rights Reserved.

Restricted © Siemens AG 2013 All rights reserved.
Page 3

3 © 2015 Siemens. All Rights Reserved.

Image downsampling

Image downsampling is about resizing an image to

smaller size in one or more dimension.

Referred by name ‘rate conversion’ in applications

where data is of streaming nature such as audio.

Naïve downsampling by integer factor M: Select every

M’th sample and drop the rest. It can result in aliasing.

Restricted © Siemens AG 2013 All rights reserved.
Page 4

4 © 2015 Siemens. All Rights Reserved.

Rate conversion filtering

To remove aliasing: First low

pass filter the data and then

skip samples.

Filtering ranges for adjacent

output pixels overlap.

Use shared memory to

improve performance.

Restricted © Siemens AG 2013 All rights reserved.
Page 5

5 © 2015 Siemens. All Rights Reserved.

float Accum=0;
smIndex = threadIdx.x * decimationFactor;
#pragma unroll

for (int k = 0; k < filterTaps; k++)
{
 float C = d_coeff[k];
 Accum = Accum + C * sharedMem[k + smIndex];
}

No. of banks=32

decimationFactor=8

k=0

Shared Memory

Bank conflicts

Rate conversion filtering loop
Access pattern within a warp

 0 1 2 Shared memory banks 31

Restricted © Siemens AG 2013 All rights reserved.
Page 6

6 © 2015 Siemens. All Rights Reserved.

float Accum=0;
smIndex = threadIdx.x * decimationFactor;
#pragma unroll

for (int k = 0; k < filterTaps; k++)
{
 float C = d_coeff[k];
 Accum = Accum + C * sharedMem[k + smIndex];
}

No. of banks=32

decimationFactor=8

k=1

Rate conversion filtering loop
Access pattern within a warp

 0 1 2 Shared memory banks 31

Restricted © Siemens AG 2013 All rights reserved.
Page 7

7 © 2015 Siemens. All Rights Reserved.

float Accum=0;
smIndex = threadIdx.x * decimationFactor;
#pragma unroll

for (int k = 0; k < filterTaps; k++)
{
 float C = d_coeff[k];
 Accum = Accum + C * sharedMem[k + smIndex];
}

No. of banks=32

decimationFactor=8

k=2

Rate conversion filtering loop
Access pattern within a warp

 0 1 2 Shared memory banks 31

Restricted © Siemens AG 2013 All rights reserved.
Page 8

8 © 2015 Siemens. All Rights Reserved.

No. of banks=32

decimationFactor=9

k=0

Rate conversion filtering loop
Access pattern for decimation factor 9

Stride=9

float Accum=0;
smIndex = threadIdx.x * decimationFactor;
#pragma unroll

for (int k = 0; k < filterTaps; k++)
{
 float C = d_coeff[k];
 Accum = Accum + C * sharedMem[k + smIndex];
}

 Shared memory banks

Restricted © Siemens AG 2013 All rights reserved.
Page 9

9 © 2015 Siemens. All Rights Reserved.

float Accum=0;
smIndex = threadIdx.x * decimationFactor;
#pragma unroll

for (int k = 0; k < filterTaps; k++)
{
 int strided_k = (k + threadIdx.x) % filterTaps;
 float C = d_coeff[strided_k];
 Accum = Accum + C * sharedMem[strided_k + smIndex];
}

filterTaps=32

No. of banks=32

decimationFactor=8

k=0

A solution
Dot product can be performed in any order

Stride=9

Thread i starts summing with

index i in the dot product

(convolution sum)

 Shared memory banks

Restricted © Siemens AG 2013 All rights reserved.
Page 10

10 © 2015 Siemens. All Rights Reserved.

There will be bank conflicts if No. of banks (NB) and

Downsampling factor (DF) shares a factor.

Shared memory BW utilization reduces by that factor.

If NB and DF are co-prime there will not be bank conflicts.

Solution on previous slide: works as if we made DF=9, thus

becoming co-prime with NB=32

Analysis

Restricted © Siemens AG 2013 All rights reserved.
Page 11

11 © 2015 Siemens. All Rights Reserved.

When NB is a power of 2, all even DF will result in bank conflicts.

Any odd number is co-prime to a power of 2. So, this solution will work.

float Accum=0;
smIndex = threadIdx.x * decimationFactor;
#pragma unroll

for (int k = 0; k < filterTaps; k++)
{
 int strided_k = (k + threadIdx.x) % filterTaps;
 float C = d_coeff[strided_k];
 Accum = Accum + C * sharedMem[strided_k + smIndex];
}

Two issues can hurt

performance (especially for

NVIDIA GPUs):

% operator in loop and

Slower access of coefficients due

to divergent access in constant

memory

Analysis (contd.)

Restricted © Siemens AG 2013 All rights reserved.
Page 12

12 © 2015 Siemens. All Rights Reserved.

The performance actually drops for almost all decimation factors.

Reasons:

1) Costly % operator computation

2) Threads read different coefficient locations, not allowing efficient broadcast.

Performance result on Quadro 4000 (Fermi)

Basic striding using % operator

Input size: 4096 x 256, float4 samples Input size: 4194304 x 1, float samples

Restricted © Siemens AG 2013 All rights reserved.
Page 13

13 © 2015 Siemens. All Rights Reserved.

Performance result on Quadro K2000 (Kepler)

Basic striding using % operator

Input size: 4096 x 256, float4 samples Input size: 4194304 x 1, float samples

Similar behavior.

However, slowdowns are much lower in case of float4 samples, as the cost of % operator is

diluted by more compute work per sample.

Restricted © Siemens AG 2013 All rights reserved.
Page 14

14 © 2015 Siemens. All Rights Reserved.

Can we do better?
Permutation scrambling

iweight = (threadIdx.x & 0x18) >> 2;
fweight0 = 1.0 * (iweight == 0);
fweight1 = 1.0 * (iweight == 2);
fweight2 = 1.0 * (iweight == 4);
fweight3 = 1.0 * (iweight == 6);
Accum = 0;
for (k = 0; k < filterTaps; k += 8)
{

C0 = C[k];
C1 = C[k+1];
C2 = C[k+2];
C3 = C[k+3];
C4 = C[k+4];
C5 = C[k+5];
C6 = C[k+6];
C7 = C[k+7];
n = k + threadIdx.x * decimationFactor;
X0 = sharedMem[n + (0 ^ iweight)];
X1 = sharedMem[n + (1 ^ iweight)];
X2 = sharedMem[n + (2 ^ iweight)];
X3 = sharedMem[n + (3 ^ iweight)];
X4 = sharedMem[n + (4 ^ iweight)];
X5 = sharedMem[n + (5 ^ iweight)];
X6 = sharedMem[n + (6 ^ iweight)];
X7 = sharedMem[n + (7 ^ iweight)];

 Accum = Accum +
 (C0*X0+C1*X1+C2*X2+C3*X3 + C4*X4+C5*X5+C6*X6+C7*X7) * fweight0 +
 (C0*X2+C1*X3+C2*X0+C3*X1 + C4*X6+C5*X7+C6*X4+C7*X5) * fweight1 +
 (C0*X4+C1*X5+C2*X6+C3*X7 + C4*X0+C5*X1+C6*X2+C7*X3) * fweight2 +
 (C0*X6+C1*X7+C2*X4+C3*X5 + C4*X2+C5*X3+C6*X0+C7*X1) * fweight3 ;
}

Within a tile: Load all

coefficients sequentially in

registers beforehand

Tile the convolution loop

Load input from shared memory

in scrambled manner using a

different permutation per group of

threads

Divide a warp into 4

groups of threads

Combine the co-efficients and

shared memory inputs according to

the permutation

Restricted © Siemens AG 2013 All rights reserved.
Page 15

15 © 2015 Siemens. All Rights Reserved.

Permutation scrambling

Shared memory access locations within a warp, within a tile

Threads 0 .. 7

Threads 8 .. 15

Threads 16 .. 23

Threads 24 .. 31

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

2 3 0 1 6 7 4 5

4 5 6 7 0 1 2 3

6 7 4 5 2 3 0 1

Before After

Time steps Time steps

Restricted © Siemens AG 2013 All rights reserved.
Page 16

16 © 2015 Siemens. All Rights Reserved.

Performance result on Quadro 4000 (Fermi)

Permutation scrambling

Input size: 4096 x 256, float4 samples Input size: 4194304 x 1, float samples

Performance improves for all even

downsampling factors

Speedups: 1.18x to 2.51x

Performance only improves for higher amount

of bank conflicts. E.g., DF=4,8,12,16

Speedups: 0.84x to 2.95x

Restricted © Siemens AG 2013 All rights reserved.
Page 17

17 © 2015 Siemens. All Rights Reserved.

Performance result on Quadro K2000 (Kepler)

Permutation scrambling

Input size: 4096 x 256, float4 samples Input size: 4194304 x 1, float samples

Performance improves for all even

downsampling factors

Speedups: 1.10x to 2.63x

Performance improves for all even

downsampling factors

Speedups: 1.27x to 2.66x

Restricted © Siemens AG 2013 All rights reserved.
Page 18

18 © 2015 Siemens. All Rights Reserved.

Performance result on Quadro K2200 (Maxwell)

Permutation scrambling

Input size: 4096 x 256, float4 samples Input size: 4194304 x 1, float samples

Performance improves for all even

downsampling factors except 14

Speedups: 0.97x to 1.65x

Performance improves for all even

downsampling factors

Speedups: 1.11x to 4.15x

Restricted © Siemens AG 2013 All rights reserved.
Page 19

19 © 2015 Siemens. All Rights Reserved.

Correlation between Speedups and DF with

Permutation scrambling (4096 x 256 x float4)

Downsampling

factor (DF)

Theoretical

shared

memory

BW loss

Quadro

4000

(Fermi)

Speedup

Quadro

K2000

(Kepler)

Speedup

Quadro

K2200

(Maxwell)

Speedup

2 2x 1.30x 1.10x 1.02x

4 4x 2.15x 1.40x 1.54x

6 2x 1.32x 1.28x 1.08x

8 8x 2.51x 1.68x 1.65x

10 2x 1.21x 1.22 1.01x

12 4x 1.53x 2.10x 1.22x

14 2x 1.18x 1.30x 0.97x

16 16x 2.00x 2.63x 1.25x

Consistently higher

speedups for

DF=4,8,12,16 because

bandwidth loss was 4x

or more

Restricted © Siemens AG 2013 All rights reserved.
Page 20

20 © 2015 Siemens. All Rights Reserved.

Correlation between Speedups and DF with

Permutation scrambling (4194304 x 1 x float)

Downsampling

factor (DF)

Theoretical

shared

memory

BW loss

Quadro

4000

(Fermi)

Speedup

Quadro

K2000

(Kepler)

Speedup

Quadro

K2200

(Maxwell)

Speedup

2 2x 0.84x 1.35x 1.11x

4 4x 1.07x 1.79x 1.53x

6 2x 0.90x 1.48x 1.19x

8 8x 1.77x 2.25x 2.73x

10 2x 0.92x 1.30x 1.27x

12 4x 1.22x 1.89x 1.68x

14 2x 1.01x 1.27x 1.18x

16 16x 2.95x 2.66x 4.15x

Consistently higher

speedups for

DF=4,8,12,16 because

bandwidth loss was 4x

or more

Restricted © Siemens AG 2013 All rights reserved.
Page 21

21 © 2015 Siemens. All Rights Reserved.

Summary & next steps

The ideas presented are quite general and applicable for other GPUs too.

Characterize performance on Intel, AMD GPUs

General solution for any number of banks

Explore fractional rate conversion, 2D filters, effects of ILP and data item size

Restricted © Siemens AG 2013 All rights reserved.
Page 22

22 © 2015 Siemens. All Rights Reserved.

Mrugesh Gajjar

Siemens Medical Solutions, USA Inc.

Ultrasound Business Unit

685 E. Middlefield Road

Mountain View, CA 94043

mrugesh.gajjar@siemens.com

Thank you for your attention,

Questions?

