
CHIMES: Efficient, Automatic Application

Checkpointing as a Powerful Tool for CUDA
Development

Max Grossman, Vivek Sarkar

Rice University

Motivation

Software development is incremental and reactive

Implement
Change

Test

SEGFAULT

Numerical
Error

Performance
regression

Success

Reproduce Fix

Motivation

In many cases, this workflow isn’t a problem and does not waste
developer time.

Still allows for rapid iteration on a feature.

Time

Implement Fix Fix Implement Fix Developer Time

Failed Test

Successful Test

Motivation

For large-scale applications and simulations, thoroughly testing new
code and reproducing bugs dominates development time

There are techniques to counter this to some extent (e.g., unit testing,
dataset subsetting) but as the complexity of an application increases, it
becomes more and more difficult to thoroughly verify correctness
quickly.

Time

Developer Time

Failed Test

Successful Test

Motivation

In particular, let’s focus on three types of regressions:
1. Performance
2. Correctness
3. Numerical accuracy

Detecting/diagnosing these regressions can be made simpler and faster
with checkpoints of in-memory application state that can be replayed.

This talk will discuss in-progress work on a powerfully simple framework
for general-purpose checkpointing of C and CUDA programs, on top of
which more powerful tools are planned.

What is a checkpoint?

A checkpoint contains most of the application state required to resume
an arbitrary C/CUDA application from an intermediate point-in-time:

1. Per-thread stack variables
2. Heap allocations
3. CUDA device memory allocations
4. Global variables
5. Per-thread stack trace

A checkpoint is persisted on-disk for later recall.

A checkpoint can be loaded into the original application to resume
execution from some intermediate point-in-time.

How are checkpoints useful

During application execution, checkpoints are periodically created and
persisted.

Time

Disk

Developer Time

Failed Test

Successful Test

How are checkpoints useful

When reproducing an error or testing a fix only the most recent
checkpoint needs to be loaded, drastically cutting down on time-to-
verify and making it simple to add a new regression test for this error.

Time

Disk

Functional Requirements

For CHIMES to be useful, it must:
1. Minimize performance impact on the executing application in

terms of processor cycles, PCIe bandwidth, memory, disk
bandwidth. Interference with the running application must be
kept to a minimum to make this a feasible tool.

2. Minimize compiler and environmental dependencies. No
compiler, operating system, virtualized environment
requirements. Currently tested on MacOS and Linux; clang++,
g++, nvcc.

3. Maximize usability and generality of the API and workflow to
make it simple to build more complex tools on top of CHIMES.

CHIMES Implementation

CHIMES can be split into 3 components: a static code analyzer, a source-
to-source code transformer, and a runtime library.

Original
Application

Source

Static
Code

Analyzer

Metadata
Files

Code
Transformer

Checkpoint-
Enabled
Source

nvcc, clang++,
g++, icc

Executable

CHIMES Implementation

At runtime, the application is launched as usual:

$./a.out

When it completes, a number of checkpoint files have been

created:

$ ls -la

-rw-r--r-- 1 jmg3 staff 12783565 Feb 7 01:00 chimes.0.ckpt

-rw-r--r-- 1 jmg3 staff 12783565 Feb 7 01:00 chimes.1.ckpt

-rw-r--r-- 1 jmg3 staff 12783565 Feb 7 01:00 chimes.2.ckpt

...

CHIMES Implementation

The application can be re-launched from an intermediate point-in-time
using an environment variable to load a specific checkpoint:

$ CHIMES_CHECKPOINT_FILE=chimes.5.ckpt ./a.out

The runtime library detects the resume, restores stack and heap

state from the provided checkpoint file, and continues execution.

Demo

Current restrictions (AKA planned work)

• Support for CUDA texture memory and constant memory
• Support for multi-GPU applications
• Support for distributed applications
• Custom user resume logic
• OpenCL, OpenACC, pthreads, etc.
• Improve portability of checkpoints across platforms and across

versions of the same application
• Continued expansion of testing suite
• Continued performance improvements

Potential Use Cases

• Efficiently reproducing application correctness errors
• Comparing checkpoints from legacy applications and CUDA ports

makes it easier to detect and diagnose numeric errors (due to
different compilers, architectures, etc.)

• Checkpoints allow you to rapidly iterate on hotspot optimizations or
newly detected performance regressions

• Checkpoints may simplify resilient application development by
making executable migration and resume easier

Conclusion

General-purpose checkpointing of applications is a powerful tool for a
number of use cases.

This is a work in-progress, but is already demonstrating promising
results on examples of basic to intermediate complexity.

Future work will expand the scope of C/CUDA features supported and
build high-level tools on top of this checkpointing utility.

Contact: Max Grossman, jmg3@rice.edu

