Memory-Efficient Heterogeneous Speech Recognition Hybrid in GPU-Equipped Mobile Devices

Alexei V. Ivanov, CTO, Verbumware Inc.

GPU Technology Conference, San Jose, March 17, 2015

Autonomous Speech Recognition With Mobile Devices

Reduce the load on web-servers and the network;

Enable autonomous human-computer spoken interaction even in the absence of the network;

Increase privacy of the customer-device interaction;

Improve accuracy of the recognition by customization of the automated speech recognition system to a specific user.

ASR application structure: FE, AM, LM, Decoding

Any ASR consists of:

- Feature Extraction (FE) that provides of the input phenomenon objective description
- Several statistical models, that help to subjectively interpret that phenomenon (in relation to the previous experience), traditionally:
 - Acoustic Model (AM)
 - Language Model (LM)
- Decoder A module that implements integration of objective measurements with knowledge stored in models to generate hypotheses on interpretation of the

Decoding with Weighted Finite State Transducers

A random walk through WFST converts strings (input into output) & accumulates a cost

Traditional way of doing WFST-based ASR:

Fuse all knowledge sources into a global network of alternatives

- •AM is evaluated on the acoustic evidence (input label costs at a given time)
- •LM is completely fused into the search graph (costs of traversals themselves)
- Search for the single best solution
- •PROBLEM: The resulting network is too sparse to be handled efficiently by computing devices
- Even more true for GPUs than CPUs!

WFST Operations

Composition (°) – **elimination of the intermediate alphabet** of two successively applied WFSTs

<u>Determinization</u> – each distinct sequence of tokens, resulting from traversing a graph, has a <u>unique</u> path associated with it;

<u>Minimization</u> – ensuring that graph does not contain equivalent states;

<u>Epsilon removal</u> – removing transitions, associated with <u>empty</u> observation symbol.

· Why we need it?

- Efficiency (obviously, DFA traversal has the least computation cost, minimal necessary set of stacks for intermediate results)
- Surprisingly, NFAs are less powerful

GPU-based Baseline System Complexity

 $min(det(\mathbf{H} \circ min(det(\mathbf{C} \circ min(det(\mathbf{L} \circ \mathbf{G})))))$

•EXAMPLE - WSJ 20K standard tri-gram LM G - "grammar" - N-gram Language Model L - "lexicon" - pronunciation rules; C - contextual phone loop; H - phone-internal topology;	Arcs	Nodes
•min(det(LoG))	16.0M	6.2M
<pre>•min(det(Homin(det(Comin(det(LoG)))))</pre>	100M	35M
•min(det(H o C))	150K	25K

GPU-based Baseline System Performance

TASKS\LMs	BCB05ONP	BCB05CND
NOV'92 (5K) WER	5.66%	2.30%
NOV'92 (5K) xRT	0.4647	0.4683
NOV'93 WER	18.22%	19.99%
NOV'93 xRT	0.4658	0.4651
Power/RTchan.	~3.6W	
Hardware	Tegra K1 (32 bit)	
·		

_					
)	BCB05ONP	BCB05CNP	TCB20ONP		
	5.66%	2.30%	1.85%		
	0.0327	0.0328	0.0364		
	18.22%	19.99%	7.77%		
	0.0332	0.0331	0.0375		
	~9 W				
	GeForce GTX TITAN BLACK				
GPU-enabled					

BCB05ONP	BCB05CNP	TCB20ONP	
5.77%	2.19%	1.63%	
0.1967	0.1900	0.2203	
18.13%	20.19%	7.63%	
0.2309	0.2382	0.2562	
from 75 W (1 ch) to 15W (full load)			
i7-4930K @3.40GHz			
Nnet-latgen-faster			

- **Accuracy** of our GPU-enabled engine **is approximately equal** to that of the reference implementation. There is a small fluctuation of the actual WER (mainly) due to the differences in arithmetic implementation.
- For the single-channel recognition the TITAN-enabled engine is significantly (~7 times) faster than the reference. This is important in tasks like media-mining for specific a priori unknown events.
- Our implementation of the speech recognition in the **mobile** device (Tegra K1) enables **twice faster than real-time processing** without any degradation of accuracy.
- Our GPU-enabled engine allows **unprecedented energy efficiency** of speech recognition. The value of 15W per RT channel for i7-4930K was estimated while the CPU was fully loaded with 12 concurrent recognition jobs. This configuration is the most power efficient manner of CPU utilization.

GPU-based Baseline System Challenges

Completely composed non-trivial WFSTs min(det(**H**omin(det(**C**omin(det(**L**o**G**)))

Consume large amount of memory ~ 6Gb

(100M arcs 35M states for WSJ 3-gram LM)

That is typically far beyond what is available in mobile devices

(~2-4Gb of RAM total Tegra K1)

GPU-based Phonetic Decoding

Phonetic decoding phase, where a sequence of acoustic observations is interpreted in terms of a sequence of phonetic symbols is

- Performed with a "dense" H

 C graph => Fast on GPU
- Equivalent to
 - HC composition with a fully-connected between time instances AM observation DAG (A) resulting in A O H O C graph (DAG)
 - Pruning into a "history tree"
 - Backtracking for the best hypothesis

GPU-based Phonetic Lattice Generation

Instead of backtracking for the best hypothesis lets merge all arcs in the history tree that do not generate meaningful output symbols

- Forward-path pruning (faster) ~ 20% computational overhead
- Backward-path pruning (more memory efficient) ~ 50% computational overhead

Result = Phonetic Lattice, a Compact Way to Store Alternatives (Report multiple good instead of the only best)

("Good" in oracle WER sense) lattice is ~7.5K arcs/sec (~ 500 kbit/s)

It is not entirely redundant compared to the original audio representation (256 kbit/s) as it contains some information AM about AM

Principle of Sequential Decoding

It is possible to make a run-time dynamic composition of sub-graphs

Lattice ~7.5K arcs/sec (pruned & epsilon-removed A o H o C)

LoG 16M arcs

This task is easier than propagating 100 times/sec through the HCLG graph with 100M arcs

CPU-based Lexical Decoding

- Lexical decoding phase
 - A sequence of phonetic symbols is interpreted as a sequence of words
- Lattice traversal is no longer a strictly time-synchronous process
 - Hash & stack are required for the implementation
- LG graph is rather sparse

CPU-based Lexical Decoding

Lattice (DAG)

Lexical graph (L o G)

GPU-CPU Hybrid Benchmarks

TCB20ONP o	n TK1	TK1 GPU	TK1 CPU
TASKS		NOV'92	NOV'93
PHONETIC LATTICE	GPU xRT	0.5128	0.5194
LEXICAL DECODING	CPU xRT	0.3820	0.3917
LEXICAL DECODING	CPU WER	1.85%	7.77%
COMPLETE RECOGNITION	N Total xRT	0.8948	0.9111

Lexical Decoding step follows Phonetic Lattice Extraction

back-track lattice generation

Total processing is still faster than natural speech pace

Conclusions

Our research confirms the possibility to implement complex recognition systems in devices with small footprint

Properties of decoding graphs dictate GPU-based phonetic decoding stage complemented with CPU-based lexical decoding

Multipath recognition is advantageous also from the multicriteria optimization point of view

Q & **A**

Do you have any questions?

www.verbumware.net info@verbumware.net

alexei_v_ivanov@ieee.org