
Introducing GPUs to a Commercial Reservoir
Simulator

Dominic Walsh, Paul Woodhams, Schlumberger

Yongpeng Zhang, Ken Esler, Stone Ridge Technology Inc.

Reservoir Simulation
• Purpose: Estimate reserves, prediction of

optimal recovery and production strategy

• Input: rock and fluid well data, production
history

• Model size: 104 cells (laptops) - 109 cells
(Linux clusters)

• Uncertainty: multiple realizations

• Embedded: NetworkPlantEconomics

Very computationally demanding

0

500

1000

1500

2000

2011 2012 2013 2014

Client Model Size (Millions Cells)

History and Problem Size
• GPU have been very successful in the Seismic domain

• Seismic clusters are acquiring GPU & Infiniband  simulation ready

• Clients are being constrained by power envelopes

• New GPU Simulator?
• ECLIPSE (circa 1984) is the industry standard
• INTERSECT (circa 2010) is the “high fidelity” simulator
• Testing and validation is measured in Man Decades
• User base migration is expected to take 5-10 yr. timeframe

Can we take advantage of new GPU hardware while preserving this investment?

Structure

• Reservoir:
• Deposition: Semi-structured grids
• Finite Volume: Low order stencils
• Static structure
• Time Stepping: Implicit and

adaptive
• Up to Billions of cells

• Wells

• Pipe flow
• Introduce local structure
• Up to 105 wells

Reservoir Grid and Wells

Irregularity and Nonlinearity

• Many small tightly-coupled sub-
problems

• Time varying structure

Terminal (THP)

Internal

constraint

Inflow model

Flow node

Phase Envelope

• Complicated Fluid and Phase Modelling
• Per-cell nonlinear systems

• Possibly non-reversible rock models

Well Structure

Phase I: Thermal Linear Solver

 Code volume

 Small problem size

 Fully Implicit

 Windows workstation

 Amdahl

• Thermal
• Single Box
• Linear Solver

0.21 0.44 4.02 8.22

71.55

10.19

 FM% Reporting% Properties% Matrix% Linear Solver% Other%

THERMAL 16X Parallel Runtime %

0.00%

50.00%

100.00%

Lines of Code

Solver

Engine

Test Model: THERM

Small: 1 M Cells & 9 Well Pairs

Thermal: CH4 + Bitumen

2.5 yrs. steam injection

very strong transitions

Numerically very demanding

Property Distribution Solution Distribution

Linear Solver Big Picture

Multigrid

ILU

SpMV & Orthog.

FGMRes:

• Iterative Solver with composite preconditioner:
• Constrained Pressure Residual (CPR) method
• Block 4x4 and Scalar Pressure systems

 Iterative solver: FGMRes

 Composite preconditioner
 Multigrid Pressure only

 GAMPACK
? ILU full system

• Multi-color
 SpMV & Orthogonalisation

4x4
1x1

Parallel Forall Blog - HPCG Everett Phillips

http://devblogs.nvidia.com/parallelforall/optimizing-high-performance-conjugate-gradient-benchmark-gpus/
http://devblogs.nvidia.com/parallelforall/optimizing-high-performance-conjugate-gradient-benchmark-gpus/
http://devblogs.nvidia.com/parallelforall/optimizing-high-performance-conjugate-gradient-benchmark-gpus/
http://devblogs.nvidia.com/parallelforall/optimizing-high-performance-conjugate-gradient-benchmark-gpus/
http://devblogs.nvidia.com/parallelforall/optimizing-high-performance-conjugate-gradient-benchmark-gpus/
http://devblogs.nvidia.com/parallelforall/optimizing-high-performance-conjugate-gradient-benchmark-gpus/
http://devblogs.nvidia.com/parallelforall/optimizing-high-performance-conjugate-gradient-benchmark-gpus/

Preliminary indicators

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

IX 16X MKL 16X HYBRID K20X

Good ~5X Challenge† ~0.9X-0.75X

0%

20%

40%

60%

80%

100%

120%

140%

N
u

m
e

r
o

f
Li

n
e

ar
 It

e
ra

ti
o

n
s

Sparse Matrix Multiply Algorithmic Weakening

CPU GPU
AMG

GPU
ILU

† Fine-Grained Parallel Preconditioners for Fast GPU-based Solvers, Dimitar Lukarski GTC 2012
High Performance Algebraic Multigrid for Commercial Applications, Jonathan Cohen GTC 2013

Offload: MPI & Multiplexing
• INTERSECT:

• MPI process per domain

• Device shared memory?
• only Linux
• not windows 

• Use threads to drive multiple cards

• C++ NOT OpenMP
• CUDA 7 

• Transfer:

• Stage on Host side
• Pinned

Proc 0

Proc 7

…
…

..

S
H
M
E
M

GPU 0

GPU 1

D
r
i
v
e
r

16 IX
Processes

Sleeping Threads Sleeping
Processes

One
Thread/GPU

Sleeping
Threads

16 IX
Processes

Standard
Parallel IX

Multithreaded
GPU

Solver

Standard
Parallel IX

Time

Transfer Cost

• Transfer cost is a
significant fraction of
complete CPU solve

• Naïve implementation
not sufficient

Props
Jacobian

Solve

CPU:

GPU:

Props

Jacobian

Time

Matrix PCI bus

Solution
(small)

Setup

Setup

Overlapping & CPR
• CPR is a composite preconditioner!

– Pressure is 1/16th
– AMG: small but costly
– Second stage is relatively cheap

• Use streams

– per matrix
– per thread/GPU

• Lambda’s in CUDA 7 

• Use mixed precision

Time

Props
Jacobian

Solve

CPU:

GPU:

Props

Jacobian

Pressure is
1/16th size

Solution
(small)

Setup

Setup

THERM Results

Good Solver speedup Still carrying a lot of non-solver time
Marginal benefit

0

2000

4000

6000

8000

10000

12000

16X CPU "+K40" "+2xK40" "+4xK20X"

Linear Solver Solve s Linear Solver Setup s Not Linear Solver

0

0.5

1

1.5

2

2.5

3

3.5

16X CPU "+K40" "+2xK40" "+4xK20X"

Linear Solver

 S
p

e
ed

u
p

Elapsed Time

Se
co

n
d

s

Larger Model: THERM_L (4M)

Better solver speedup
More work on cards

0

2

4

6

16X CPU "+4xM2090" "+4xK40"

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

16X CPU "+4xM2090" "+4xK40"

Not Linear Solver Linear Solver Setup s Linear Solver Solve s

Bigger impact

Linear Solver

Sp
ee

d
u

p

Se
co

n
d

s

Elapsed Time

0

5

10

15

20

25

30

16 32 48 16 +4M2090 16+4K40

THERM_L CPU Elapsed (hr.)

Implications: GPU vs CPU

Currently need 48 nodes to match GPU performance
Increased CPU’s does not speedup

Amdahl

THERM_L Strong Scaling

0.0

5.0

10.0

15.0

20.0

25.0

30.0

16X CPU 4xM2090 4xK40 16 M2090 4 K40 16 K40 2 K80 4 K80 8 K80 16 K80

Li
n

e
ar

 S
o

lv
e

r
Sp

e
e

d
u

p

CUDASolver V1
Single Node

CUDAsolver V2
MPI Cluster Ready

Single-Node

Multi-Node

26X
Linear
Solver
speedup

THERM_XL(16M): Strong Scaling

0

5000

10000

15000

20000

25000

60MPI 120MPI_II 240MPI_II 320MPI 480MPI 54MPI+18K40 108MPI+36K40 180+60K40 216MPI+72K40

CPU vs. GPU Linear Solver Time

Compute Density

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20

Li
n

e
ar

 S
o

lv
e

r
ti

m
e

 (
h

rs
)

Number of Nodes

CPU Best Time

GPU Worst Time

GPU Best Time

2.2X
5.4X

4.7X More Nodes

Compute Density

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20

Li
n

e
ar

 S
o

lv
e

r
ti

m
e

 (
h

rs
)

Number of Nodes

CPU Best Time

GPU Worst Time

GPU Best Time

2.2X
5.4X

4.7X More Nodes

Next Steps
• Commercialize current solution
• Lessons learnt CPU Solver
• Cluster hardware implications?

• Linear Solver is not enough extend GPU

• Wells too small & too complicated, remain on CPU
• Reservoir

• Jacobian construction
• Property calculation

• Requirements:

• Single code base: OpenACC?, Custom?
• Overlapping rework

Thanks and Acknowledgements

Many thanks to Jonathan Cohen, Julian Demouth, Patrice Castonguay,
Justin Luitjens, Ken Hester & Doug Holt

Questions?

