Introducing GPUs to a Commercial Reservoir Simulator

Dominic Walsh, Paul Woodhams, Schlumberger Yongpeng Zhang, Ken Esler, Stone Ridge Technology Inc.

Reservoir Simulation

- Purpose: Estimate reserves, prediction of optimal recovery and production strategy
- Input: rock and fluid well data, production history
- Model size: 10⁴ cells (laptops) 10⁹ cells (Linux clusters)
- Uncertainty: multiple realizations
- Embedded: Network → Plant → Economics

Very computationally demanding

Client Model Size (Millions Cells)

History and Problem Size

- GPU have been very successful in the Seismic domain
 - Seismic clusters are acquiring GPU & Infiniband → simulation ready
- Clients are being constrained by power envelopes
- New GPU Simulator?
 - ECLIPSE (circa 1984) is the industry standard
 - INTERSECT (circa 2010) is the "high fidelity" simulator
 - Testing and validation is measured in Man Decades
 - User base migration is expected to take 5-10 yr. timeframe

Can we take advantage of new GPU hardware while preserving this investment?

Structure

- Reservoir:
 - Deposition: Semi-structured grids
 - Finite Volume: Low order stencils
 - Static structure
 - Time Stepping: Implicit and adaptive
 - Up to Billions of cells
- Wells
 - Pipe flow
 - Introduce local structure
 - Up to 10⁵ wells

Reservoir Grid and Wells

Irregularity and Nonlinearity

Well Structure

- Many small tightly-coupled subproblems
- Time varying structure

Phase Envelope

- Complicated Fluid and Phase Modelling
 - Per-cell nonlinear systems
- Possibly non-reversible rock models

Phase I: Thermal Linear Solver

- ✓ Code volume
- ✓ Small problem size
- ✓ Fully Implicit
- ✓ Windows workstation

THERMAL 16X Parallel Runtime % Amdahl \checkmark 71.55 Thermal • Single Box • Linear Solver 10.19 8.22 4.02 0.21 0.44 FM% Reporting% **Properties%** Matrix% Linear Solver% Other%

Test Model: THERM

Property Distribution

Solution Distribution

Small: 1 M Cells & 9 Well Pairs Thermal: CH4 + Bitumen 2.5 yrs. steam injection very strong transitions

Numerically very demanding

Linear Solver Big Picture

- Iterative Solver with composite preconditioner:
 - Constrained Pressure Residual (CPR) method
 - Block 4x4 and Scalar Pressure systems
- ✓ Iterative solver: FGMRes
 - ✓ Composite preconditioner
 - ✓ Multigrid Pressure only
 - ✓ GAMPACK
 - ? ILU full system
 - Multi-color
- ✓ SpMV & Orthogonalisation

Preliminary indicators

Sparse Matrix Multiply

Algorithmic Weakening

[†] Fine-Grained Parallel Preconditioners for Fast GPU-based Solvers, Dimitar Lukarski GTC 2012 High Performance Algebraic Multigrid for Commercial Applications, Jonathan Cohen GTC 2013

Offload: MPI & Multiplexing

- INTERSECT:
 - MPI process per domain
- Device shared memory?
 - only Linux
 - not windows ☺
- Use threads to drive multiple cards
 - C++ NOT OpenMP
 - CUDA 7 😳
- Transfer:
 - Stage on Host side
 - Pinned

Transfer Cost

- Transfer cost is a significant fraction of complete CPU solve
- Naïve implementation not sufficient

Overlapping & CPR

- CPR is a *composite* preconditioner!
 - Pressure is 1/16th
 - AMG: small but costly
 - Second stage is relatively cheap
- Use streams
 - per matrix
 - per thread/GPU
 - Lambda's in CUDA 7 😊
- Use mixed precision

Time

THERM Results

Linear Solver

Elapsed Time

■ Linear Solver Solve s ■ Linear Solver Setup s ■ Not Linear Solver

Good Solver speedup

Still carrying a lot of non-solver time Marginal benefit

Larger Model: THERM_L (4M)

6 4 2 0 16X CPU "+4xM2090" "+4xK40"

Linear Solver

Elapsed Time

■ Not Linear Solver ■ Linear Solver Setup s ■ Linear Solver Solve s

Better solver speedup More work on cards **Bigger** impact

Speedup

Implications: GPU vs CPU

THERM_L CPU Elapsed (hr.)

Currently need 48 nodes to match GPU performance Increased CPU's does not speedup

THERM_L Strong Scaling

THERM_XL(16M): Strong Scaling

CPU vs. GPU Linear Solver Time

Compute Density

Next Steps

- Commercialize current solution
- Lessons learnt \rightarrow CPU Solver
- Cluster hardware implications?
- Linear Solver is not enough \rightarrow extend GPU
 - Wells too small & too complicated, remain on CPU
 - Reservoir
 - Jacobian construction
 - Property calculation
- Requirements:
 - Single code base: OpenACC?, Custom?
 - Overlapping rework

Thanks and Acknowledgements

Many thanks to Jonathan Cohen, Julian Demouth, Patrice Castonguay, Justin Luitjens, Ken Hester & Doug Holt

Questions?