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Reservoir Simulation 
• Purpose: Estimate reserves, prediction of 

optimal recovery and production strategy 
 

• Input: rock and fluid well data, production 
history 
 

• Model size: 104 cells (laptops) - 109 cells 
(Linux clusters) 
 

• Uncertainty: multiple realizations 
 

• Embedded: NetworkPlantEconomics 
 

Very computationally demanding 
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History and Problem Size 
• GPU have been very successful in the Seismic domain 

• Seismic clusters are acquiring GPU & Infiniband  simulation ready 
 

• Clients are being constrained by power envelopes 
 

• New GPU Simulator? 
• ECLIPSE (circa 1984) is the industry standard 
• INTERSECT (circa 2010) is the “high fidelity” simulator 
• Testing and validation is measured in Man Decades 
• User base migration is expected to take 5-10 yr. timeframe 

 
Can we take advantage of new GPU hardware while preserving this investment? 



Structure 

• Reservoir: 
• Deposition: Semi-structured grids 
• Finite Volume: Low order stencils 
• Static structure 
• Time Stepping: Implicit and 

adaptive 
• Up to Billions of cells 

 
• Wells 

• Pipe flow 
• Introduce local structure 
• Up to 105 wells 

 
 
 

Reservoir Grid and Wells 



Irregularity and Nonlinearity 

• Many small tightly-coupled sub-
problems  

• Time varying structure 
 

Terminal (THP) 

 
Internal 

constraint 

Inflow model 

Flow node 

Phase Envelope 

• Complicated Fluid  and Phase Modelling 
• Per-cell nonlinear systems 

• Possibly non-reversible rock models 

Well Structure 



Phase I: Thermal Linear Solver 

 Code volume 

 Small problem size 

 Fully Implicit 

 Windows workstation 

 
 Amdahl  

• Thermal 
• Single Box 
• Linear Solver 
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Test Model: THERM 

Small: 1 M Cells & 9 Well Pairs 

Thermal: CH4 + Bitumen 

2.5 yrs. steam injection 

very strong transitions 

Numerically very demanding 

Property Distribution Solution Distribution 



Linear Solver Big Picture 

Multigrid 

ILU 

SpMV & Orthog. 

FGMRes: 

• Iterative Solver with composite preconditioner: 
• Constrained Pressure Residual (CPR) method 
• Block 4x4 and Scalar Pressure systems 

 
 Iterative solver: FGMRes 

 Composite preconditioner 
 Multigrid Pressure only 

 GAMPACK 
? ILU full system 

• Multi-color 
 SpMV & Orthogonalisation 

4x4 
1x1 
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Preliminary indicators 
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† Fine-Grained Parallel Preconditioners for Fast GPU-based Solvers, Dimitar Lukarski GTC 2012 
High Performance Algebraic Multigrid for Commercial Applications, Jonathan Cohen GTC 2013 
 



Offload: MPI & Multiplexing 
• INTERSECT: 

• MPI process per domain 
 

• Device shared memory? 
• only Linux 
• not windows  

 
• Use threads to drive multiple cards 

• C++ NOT OpenMP 
• CUDA 7  

 
• Transfer: 

• Stage on Host side 
• Pinned 
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Transfer Cost 

• Transfer cost is a 
significant fraction of 
complete CPU solve 

 

• Naïve implementation 
not sufficient 
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Overlapping & CPR 
• CPR is a composite preconditioner! 

– Pressure is 1/16th 
– AMG: small but costly 
– Second stage is relatively cheap 

 
• Use streams 

– per matrix 
– per thread/GPU  

• Lambda’s in CUDA 7  

 

• Use mixed precision 
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THERM Results 

Good Solver speedup Still carrying a lot of non-solver time 
Marginal benefit 
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Larger Model: THERM_L (4M) 

Better solver speedup 
More work on cards 
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Implications: GPU vs CPU 

Currently need 48 nodes to match GPU performance 
Increased CPU’s does not speedup 

Amdahl 



THERM_L Strong Scaling 
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THERM_XL(16M): Strong Scaling 
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Compute Density 
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Compute Density 
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Next Steps 
• Commercialize current solution 
• Lessons learnt CPU Solver 
• Cluster hardware implications? 

 
• Linear Solver is not enough extend GPU 

• Wells too small & too complicated, remain on CPU 
• Reservoir 

• Jacobian construction 
• Property calculation 

 
• Requirements: 

• Single code base: OpenACC?, Custom? 
• Overlapping rework 
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