Rolls-Royce Hydra on GPUs using OP2

|.Z. Reguly, G.R. Mudalige, M.B. Giles,
University of Oxford
C. Bertolli, A. Betts, P.H.J. Kelly
Imperial College London, (IBM TJ Watson)
David Radford
Rolls-Royce plc.

OXFORD

e-Research
CENTRE

Rolls-Royce imperial College

UNIVERSI

u
0):4210)23))

The Challenge

HPC is undergoing an enormous change
— New hardware architectures
— New parallel programming abstractions, languages

Flat (MPI) parallelism -> Multiple levels of parallel
programming, heterogeneous systems (Titan, CORAL)

Getting high performance means specialization for the
hardware

Code maintainability, longevity
“Future proofing”

Domain Specific Languages

Separate abstract specification of computations from
the parallel implementation

High productivity for the domain scientist

High productivity for the library developer

— Can experiment and validate on small benchmarks, results
immediately apply to large-scale scientific codes

As hardware changes, the library adopts the latest and
greatest features, optimizations

— “User” code doesn’t change

Domain Specific Languages

 Lots of research done on DSLs
— Most of them wither away and die...

 What are the obstacles to widespread adoption?
— Critical mass
— Usually applied to simple, toy problems

— Little evidence that DSLs can be applied to industrial
scale applications

Unstructured Meshes

* For extremely complex cases, unstructured meshes are
the only tool capable of delivering correct results.
* Large, very complicated codebase

Vorticity isosurface from a large Eddy
simulation of a compressor

OP2 for Unstructured Grids

e Abstraction: /e\ﬂ\
o\ &

— Sets, maps, data
— Loop over sets, describing access type o

AN

res.h:

vold res (double *A, double *u, double *du) {
(*du) += (*A) * (*u);

} Call “res” for each edge Iterate over edges

op par loop(res,"res", edges,
op arg dat(A,-1,0P ID, 1,”double",OP READ), Withthe

op arg dat(u, 0,col,1,”double",OP READ), following
SrsaRaeat(dme O gaown. iy d opiloil el ACBLSTINC arguments

Rolls-Royce Hydra

Full aircraft

BT
v - Y

Hydra is an unstructured mesh production
CFD application used at Rolls-Royce for
simulating turbo-machinery of aircraft engines

Internal Engine
blades

Turbines

Rolls-Royce Hydra

Used for the design of turbomachinery
— Key CFD production code
— Steady and unsteady flow
— Reynolds Averaged Navier-Stokes
In development for >15 years
— Fortran 77
— 50k+ lines of source code
— ~300 computational loops

Written in OPlus — same notions of sets, maps, data and loops over
sets

Our goal is to evaluate the utility of OP2, when applied to Rolls-
Royce Hydra

Conversion

* The original source code had to be converted to
use the OP2 API, keeping the “science” intact

* Hydra was based on OPlus, the conversion was
not difficult

— Computations did not change, they were only outlined
and described using the parallel loop API

From an application developer point of view,
this is it — the rest is about the library

do while (op_par_loop(ncells, istart, iend))
call op_access_r8('r’,areac,l,ncells,

& null,0,0,1,1)
call op_access_xr8(’u’,arean,l,nnodes,
& ncell,1l,1,1,3)
do ic = istart, iend
il = ncell(l,ic)
i2 = ncell(2,ic)
i3 = ncell(3,1ic)
arean(11) = arean(i1il) + areac(ic)/3.0
arean (i2) = arean(i2) + areac(ic)/3.0
arean(i3) = arean(i3) + areac(ic)/3.0
end do

end while

subroutine distr (areac,areanl,arean?, arean3)

real (8), intent (in) :: areac

real (8), intent (inout) :: areanl,
& arean?, arean?il

areanl = areanl + areac/3.0

arean?2 = areanZ + areac/3.0

arean3 = arean3 + areac/3.0

end subroutine

op_par_loop|[cells, distr,

& op_arg_dat (areac, |-1, OP_ID, 1, OP_READ),
& op_arg_daf (arean, |1, ncell, 1, OP_INC),

& op_arg_daf (arean, |2, ncell, 1, OP_INC),

& op_arg_datf (arean, |3, ncell, 1, OP_INC))

Code generation

 OP2-Hydra can do pure MPI right away, but
performance is poor due to loss of optimizations
(function pointers, outlined code, going through
Fortran to C bindings)

* Code generation for MPI can recover these
optimizations

* Python script parses op_par_loop calls in high-level
files, replaces them with calls to generated code

— Why not compilers?

Baseline performance

OPlus PP vs. OP2 perfectly match, down to instruction
count being within 5%.

512

OPllus s
- OP2 (initial) ——— 2 socket
I OP2 XXX Xeon E5-2640

f;:\ *
T 2%12 cores
2.4GHz
g 64
E

32 U I e DU N E S ; I SO

16 @

1 6 12 24

Number of threads

OP2

Scotch partitioning

lons In

t

IMiIizZa

Basic opt

e Support for ParMetis and PT-

Xeon E5-2640
2*12 cores

2 socket
2.4GHz

7

1
OPlus
OP2 ==X
R
+renum SN

+PTScotch

| \\\\\\\

oLy
A,
.0.. .’. 00. .0.. .’. 00. .0.0 .0.. .’. .0.0

I

ot
B S I
() 0’0 000 0‘0 0’0 000 0‘0 000 000 0‘0 000 000 000 000 0’0 00

PPPPPPPPPPPPPPPP

40

(spuo2as) auIry,

Partial halo exchanges for boundary loops
Mesh renumbering to improve cache locality

12
Number of threads

We can match and outperform the original under
the same circumstances

That alone is great, but what else can OP2 do?
Enable GPU execution of course...

Heterogeneous execution

Block 2

MPI boundary

:Owner—compute
- Halo exchanges

Fine grain parallelism
with CUDA or OpenMP

Code generation + pre-
processing to support
shared memory
parallelism via coloring

Generating CUDA Fortran

* A Fortran module for each “kernel”
— Set up pointers, reductions on the host

— CUDA kernel where threads set up the
parameters, call the user function, do memory
movement

* Slight modifications to user kernel
— Qualifiers, global constants

Challenges

* Large number of computational kernels
— Direct, Indirect read, Indirect Increment

 Huge kernels

— Datasets have up to 18 components (double precision
values per set element)

— Some kernels move up to 120 double precision values
for each set element

* |t's all about bandwidth utilization and occupancy

GPU optimizations

 Through the code generator

— Replace device constants (regexp)
— Change to SoA access (regexp)

var(m) -> var(nodes_stride*(m-1)+1), through OP2_SOA(var, nodes_stride,m)

* Manually

— Add intent(in) to variables to enable caching loads
* Auto-tuning
— Block sizes, register counts

GPU optimizations

Execution@imelds)a

32.040

25.61¢

INRRRRRRIA

Oplus® K202 K20HSoA)Z
CPUE (Initial)@

K20m K20@ 2*K20m
(Block® (Best)& (Best)®
opt)&

K40G K80
(Best)a (Best)@

Node:

Xeon E5-1650 @ 3.2 GHz
2x Tesla K20m cards

1x Tesla K40 @ 875 MHz
1x Tesla K80 @ 875 MHz

PGl 14.7

Strong scaling

800K vertices, 2.5M edges. 1 Hector node (32 cores) and 1 Jade node (2 K20 GPUs)

32 | [I
=& OPlus -
g \“\}& -A- OP2 MPI (PTScotch)

[N
»

3
C
o s ~ @-0P2 MPI+CUDA (PTScotch)
(B} . \s\
)
@ 2 ° %\\N\
§ © ‘$~\ N
5 1 \“A.- X
m ~~~~~
0.5 T
0.25 B LR A
1 2 4 8 16 32 64 128

Nodes
Linear scaling up to 16 nodes (512 cores)

Weak scaling

0.5M vertices per node
16

—¢OPlus
-A- OP2 MPI (PTScotch)
@—-0P2 MPI+CUDA (PTScotch)

X
R s — S |
&L 8
S
@4! hd ? ?
(¢B]
=
=
S
o

1 2 4 8
Nodes
GPU node has 2* over HECToR node

Hybrid CPU-GPU execution

Using the CPU and the GPU at the same time
Some processes use the CPU, some the GPU

How to load balance? Some loops are faster on the GPU,
some on the CPU

18
[l l l l
16 ———
\ | 1GPU ——1GPU+CPU ||
- 14
©
S 12 oo SS_cs==f=c==ccf-cc==csc=c===s====c=d=======
9
810 S
o
£ 8 accumedges
=
;:zs 4 ifluxedge presa
vfluxedge
edgecon
2
0
0.5 1 1.5 2 2.5 3 3.5 4

Partition size balance

Conclusions

DSLs can be applied to industrial-scale codes

Early version was slow: cost of a high-level API

— Had to understand these limitations, code generate to circumvent
them

Matching & increased performance on the same HW

— By using OP2, some improved techniques come for “free”
(renumbering, better partitioning, better MPI, etc.)

Enabled OpenMP, CUDA and CPU+GPU Hybrid execution

— On such complicated code, the performance advantage is not huge —
but the option is there!

All of these optimizations apply with no (or very little) change to
the user code

Thank youl!

Acknowledgements:

This research has been funded by the UK Technology Strategy Board and Rolls-Royce plc.
through the Siloet project, the UK Engineering and Physical Sciences Research Council
projects EP/1006079/1, EP/I00677X/1 on “Multi-layered Abstractions for PDEs” and the
“Algorithms, Software for Emerging Architectures” (ASEArch) EP/J010553/1 project. The
authors would like to acknowledge the use of the University of Oxford Advanced
Research Computing (ARC) facility in carrying out this work.

Special thanks to: Brent Leback (PGI), Maxim Milakov (NVIDIA), Leigh Lapworth, Paolo
Adami, Yoon Ho (Rolls-Royce), Endre Laszlé (Oxford), Graham Markall, Fabio Luporini,
David Ham, Florian Rathgeber (Imperial College), Lawrence Mitchell (Edinburgh)

