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The Challenge 

• HPC is undergoing an enormous change 
– New hardware architectures 
– New parallel programming abstractions, languages 

• Flat (MPI) parallelism -> Multiple levels of parallel 
programming, heterogeneous systems (Titan, CORAL) 

• Getting high performance means specialization for the 
hardware 

• Code maintainability, longevity 
• “Future proofing” 



Domain Specific Languages 

• Separate abstract specification of computations from 
the parallel implementation 

• High productivity for the domain scientist 

• High productivity for the library developer 
– Can experiment and validate on small benchmarks, results 

immediately apply to large-scale scientific codes 

• As hardware changes, the library adopts the latest and 
greatest features, optimizations 
– “User” code doesn’t change 



Domain Specific Languages 

• Lots of research done on DSLs 
– Most of them wither away and die… 

• What are the obstacles to widespread adoption? 
– Critical mass 

– Usually applied to simple, toy problems 

– Little evidence that DSLs can be applied to industrial 
scale applications 



Unstructured Meshes 

Ground vortex ingestion 
Vorticity isosurface from a large Eddy 
simulation of a compressor 

• For extremely complex cases, unstructured meshes are 
the only tool capable of delivering correct results. 

• Large, very complicated codebase 



OP2 for Unstructured Grids 
• Abstraction: 

– Sets, maps, data 

– Loop over sets, describing access type 
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res.h: 
void res(double *A, double *u, double *du) { 

  (*du) += (*A) * (*u); 

} 

... 

op_par_loop(res,"res", edges, 

 op_arg_dat(A,-1,OP_ID, 1,”double",OP_READ), 

 op_arg_dat(u, 0,col,1,”double",OP_READ), 

 op_arg_dat(du,0,row,1,”double",OP_INC)); 

Iterate over edges Call “res” for each edge 

With the 
following 
arguments 



Rolls-Royce Hydra 

Hydra is an unstructured mesh production 
CFD application used at Rolls-Royce for 
simulating turbo-machinery of aircraft engines 

Full aircraft 

Internal Engine  
blades Noise Turbines 



Rolls-Royce Hydra 
• Used for the design of turbomachinery 

– Key CFD production code 
– Steady and unsteady flow 
– Reynolds Averaged Navier-Stokes 

• In development for >15 years 
– Fortran 77 
– 50k+ lines of source code 
– ~300 computational loops 

• Written in OPlus – same notions of sets, maps, data and loops over 
sets 

• Our goal is to evaluate the utility of OP2, when applied to Rolls-
Royce Hydra 
 



Conversion 

• The original source code had to be converted to 
use the OP2 API, keeping the “science” intact 

• Hydra was based on OPlus, the conversion was 
not difficult 

– Computations did not change, they were only outlined 
and described using the parallel loop API 

From an application developer point of view, 
this is it – the rest is about the library 





Code generation 

• OP2-Hydra can do pure MPI right away, but 
performance is poor due to loss of optimizations 
(function pointers, outlined code, going through 
Fortran to C bindings) 

• Code generation for MPI can recover these 
optimizations 

• Python script parses op_par_loop calls in high-level 
files, replaces them with calls to generated code 
– Why not compilers? 



Baseline performance 
OPlus PP vs. OP2 perfectly match, down to instruction 
count being within 5%. 

2 socket 
Xeon E5-2640 
2*12 cores 
2.4GHz 



Basic optimizations in OP2 
• Support for ParMetis and PT-Scotch partitioning 

• Partial halo exchanges for boundary loops 

• Mesh renumbering to improve cache locality 

2 socket 
Xeon E5-2640 
2*12 cores 
2.4GHz 



We can match and outperform the original under 
the same circumstances 

That alone is great, but what else can OP2 do? 
Enable GPU execution of course... 



Heterogeneous execution 

• Fine grain parallelism 
with CUDA or OpenMP 

• Code generation + pre-
processing to support 
shared memory 
parallelism via coloring 



Generating CUDA Fortran 

• A Fortran module for each “kernel” 
– Set up pointers, reductions on the host 

– CUDA kernel where threads set up the 
parameters, call the user function, do memory 
movement 

• Slight modifications to user kernel 
– Qualifiers, global constants 



Challenges 

• Large number of computational kernels 
– Direct, Indirect read, Indirect Increment 

• Huge kernels 
– Datasets have up to 18 components (double precision 

values per set element) 
– Some kernels move up to 120 double precision values 

for each set element 

• It’s all about bandwidth utilization and occupancy 



GPU optimizations 

• Through the code generator 
– Replace device constants (regexp) 
– Change to SoA access (regexp) 

 

• Manually 
– Add intent(in) to variables to enable caching loads 

• Auto-tuning 
– Block sizes, register counts 

var(m) -> var(nodes_stride*(m-1)+1), through OP2_SOA(var, nodes_stride,m) 



GPU optimizations 

Node: 
Xeon E5-1650 @ 3.2 GHz 
2x Tesla K20m cards 
 
1x Tesla K40 @ 875 MHz 
 
1x Tesla K80 @ 875 MHz 
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Strong scaling 
800K vertices, 2.5M edges. 1 Hector node (32 cores) and 1 Jade node (2 K20 GPUs) 

Linear scaling up to 16 nodes (512 cores)  
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Weak scaling 
0.5M vertices per node 

GPU node has 2* over HECToR node 
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Hybrid CPU-GPU execution 
• Using the CPU and the GPU at the same time 

• Some processes use the CPU, some the GPU 

• How to load balance? Some loops are faster on the GPU, 
some on the CPU 
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Conclusions 

• DSLs can be applied to industrial-scale codes 
• Early version was slow: cost of a high-level API 

– Had to understand these limitations, code generate to circumvent 
them 

• Matching & increased performance on the same HW 
– By using OP2, some improved techniques come for “free” 

(renumbering, better partitioning, better MPI, etc.) 

• Enabled OpenMP, CUDA and CPU+GPU Hybrid execution 
– On such complicated code, the performance advantage is not huge – 

but the option is there! 

• All of these optimizations apply with no (or very little) change to 
the user code 



Thank you! 
Questions? 

istvan.reguly@oerc.ox.ac.uk 
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