
Rolls-Royce Hydra on GPUs using OP2

I.Z. Reguly, G.R. Mudalige, M.B. Giles,
University of Oxford

C. Bertolli, A. Betts, P.H.J. Kelly
Imperial College London, (IBM TJ Watson)

David Radford
Rolls-Royce plc.

The Challenge

• HPC is undergoing an enormous change
– New hardware architectures
– New parallel programming abstractions, languages

• Flat (MPI) parallelism -> Multiple levels of parallel
programming, heterogeneous systems (Titan, CORAL)

• Getting high performance means specialization for the
hardware

• Code maintainability, longevity
• “Future proofing”

Domain Specific Languages

• Separate abstract specification of computations from
the parallel implementation

• High productivity for the domain scientist

• High productivity for the library developer
– Can experiment and validate on small benchmarks, results

immediately apply to large-scale scientific codes

• As hardware changes, the library adopts the latest and
greatest features, optimizations
– “User” code doesn’t change

Domain Specific Languages

• Lots of research done on DSLs
– Most of them wither away and die…

• What are the obstacles to widespread adoption?
– Critical mass

– Usually applied to simple, toy problems

– Little evidence that DSLs can be applied to industrial
scale applications

Unstructured Meshes

Ground vortex ingestion
Vorticity isosurface from a large Eddy
simulation of a compressor

• For extremely complex cases, unstructured meshes are
the only tool capable of delivering correct results.

• Large, very complicated codebase

OP2 for Unstructured Grids
• Abstraction:

– Sets, maps, data

– Loop over sets, describing access type
1

2

3

6

4

5
7

1

2

3

res.h:
void res(double *A, double *u, double *du) {

 (*du) += (*A) * (*u);

}

...

op_par_loop(res,"res", edges,

 op_arg_dat(A,-1,OP_ID, 1,”double",OP_READ),

 op_arg_dat(u, 0,col,1,”double",OP_READ),

 op_arg_dat(du,0,row,1,”double",OP_INC));

Iterate over edges Call “res” for each edge

With the
following
arguments

Rolls-Royce Hydra

Hydra is an unstructured mesh production
CFD application used at Rolls-Royce for
simulating turbo-machinery of aircraft engines

Full aircraft

Internal Engine
blades Noise Turbines

Rolls-Royce Hydra
• Used for the design of turbomachinery

– Key CFD production code
– Steady and unsteady flow
– Reynolds Averaged Navier-Stokes

• In development for >15 years
– Fortran 77
– 50k+ lines of source code
– ~300 computational loops

• Written in OPlus – same notions of sets, maps, data and loops over
sets

• Our goal is to evaluate the utility of OP2, when applied to Rolls-
Royce Hydra

Conversion

• The original source code had to be converted to
use the OP2 API, keeping the “science” intact

• Hydra was based on OPlus, the conversion was
not difficult

– Computations did not change, they were only outlined
and described using the parallel loop API

From an application developer point of view,
this is it – the rest is about the library

Code generation

• OP2-Hydra can do pure MPI right away, but
performance is poor due to loss of optimizations
(function pointers, outlined code, going through
Fortran to C bindings)

• Code generation for MPI can recover these
optimizations

• Python script parses op_par_loop calls in high-level
files, replaces them with calls to generated code
– Why not compilers?

Baseline performance
OPlus PP vs. OP2 perfectly match, down to instruction
count being within 5%.

2 socket
Xeon E5-2640
2*12 cores
2.4GHz

Basic optimizations in OP2
• Support for ParMetis and PT-Scotch partitioning

• Partial halo exchanges for boundary loops

• Mesh renumbering to improve cache locality

2 socket
Xeon E5-2640
2*12 cores
2.4GHz

We can match and outperform the original under
the same circumstances

That alone is great, but what else can OP2 do?
Enable GPU execution of course...

Heterogeneous execution

• Fine grain parallelism
with CUDA or OpenMP

• Code generation + pre-
processing to support
shared memory
parallelism via coloring

Generating CUDA Fortran

• A Fortran module for each “kernel”
– Set up pointers, reductions on the host

– CUDA kernel where threads set up the
parameters, call the user function, do memory
movement

• Slight modifications to user kernel
– Qualifiers, global constants

Challenges

• Large number of computational kernels
– Direct, Indirect read, Indirect Increment

• Huge kernels
– Datasets have up to 18 components (double precision

values per set element)
– Some kernels move up to 120 double precision values

for each set element

• It’s all about bandwidth utilization and occupancy

GPU optimizations

• Through the code generator
– Replace device constants (regexp)
– Change to SoA access (regexp)

• Manually
– Add intent(in) to variables to enable caching loads

• Auto-tuning
– Block sizes, register counts

var(m) -> var(nodes_stride*(m-1)+1), through OP2_SOA(var, nodes_stride,m)

GPU optimizations

Node:
Xeon E5-1650 @ 3.2 GHz
2x Tesla K20m cards

1x Tesla K40 @ 875 MHz

1x Tesla K80 @ 875 MHz

PGI 14.7 Oplus

(MPI)
K20

no opt
K20
SoA

K20
Blksize

K20
Tex

2x K20 K40

32.04	

25.61	

15.21	
13.64	

11.6	

7.4	
8.8	

6.1	

0	

5	

10	

15	

20	

25	

30	

35	

Oplus	
CPU	

K20	
(Ini al)	

K20	(SoA)	 K20	
(Block	
opt)	

K20	
(Best)	

2*K20	
(Best)	

K40	
(Best)	

K80	
(Best)	

Ex
e

cu
o

n
	

m
e

	(
s)

	

Strong scaling
800K vertices, 2.5M edges. 1 Hector node (32 cores) and 1 Jade node (2 K20 GPUs)

Linear scaling up to 16 nodes (512 cores)

0.25

0.5

1

2

4

8

16

32

1 2 4 8 16 32 64 128

R
u

n
ti

m
e

(S
ec

o
n

d
s)

Nodes

OPlus

OP2 MPI (PTScotch)

OP2 MPI+CUDA (PTScotch)

Weak scaling
0.5M vertices per node

GPU node has 2* over HECToR node

1

2

4

8

16

1 2 4 8 16

R
u

n
ti

m
e

(S
ec

o
n

d
s)

Nodes

OPlus

OP2 MPI (PTScotch)

OP2 MPI+CUDA (PTScotch)

Hybrid CPU-GPU execution
• Using the CPU and the GPU at the same time

• Some processes use the CPU, some the GPU

• How to load balance? Some loops are faster on the GPU,
some on the CPU

0

2

4

6

8

10

12

14

16

18

0.5 1 1.5 2 2.5 3 3.5 4

R
un

 t
im

e
(s

ec
on

ds
)

Partition size balance

1 GPU 1 GPU + CPU

edgecon

accumedges

ifluxedge

vfluxedge

srcsa

Conclusions

• DSLs can be applied to industrial-scale codes
• Early version was slow: cost of a high-level API

– Had to understand these limitations, code generate to circumvent
them

• Matching & increased performance on the same HW
– By using OP2, some improved techniques come for “free”

(renumbering, better partitioning, better MPI, etc.)

• Enabled OpenMP, CUDA and CPU+GPU Hybrid execution
– On such complicated code, the performance advantage is not huge –

but the option is there!

• All of these optimizations apply with no (or very little) change to
the user code

Thank you!
Questions?

istvan.reguly@oerc.ox.ac.uk
Acknowledgements:
This research has been funded by the UK Technology Strategy Board and Rolls-Royce plc.
through the Siloet project, the UK Engineering and Physical Sciences Research Council
projects EP/I006079/1, EP/I00677X/1 on “Multi-layered Abstractions for PDEs” and the
“Algorithms, Software for Emerging Architectures“ (ASEArch) EP/J010553/1 project. The
authors would like to acknowledge the use of the University of Oxford Advanced
Research Computing (ARC) facility in carrying out this work.

Special thanks to: Brent Leback (PGI), Maxim Milakov (NVIDIA), Leigh Lapworth, Paolo
Adami, Yoon Ho (Rolls-Royce), Endre László (Oxford), Graham Markall, Fabio Luporini,
David Ham, Florian Rathgeber (Imperial College), Lawrence Mitchell (Edinburgh)

