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The Challenge

HPC is undergoing an enormous change
— New hardware architectures
— New parallel programming abstractions, languages

Flat (MPI) parallelism -> Multiple levels of parallel
programming, heterogeneous systems (Titan, CORAL)

Getting high performance means specialization for the
hardware

Code maintainability, longevity
“Future proofing”



Domain Specific Languages

Separate abstract specification of computations from
the parallel implementation

High productivity for the domain scientist

High productivity for the library developer

— Can experiment and validate on small benchmarks, results
immediately apply to large-scale scientific codes

As hardware changes, the library adopts the latest and
greatest features, optimizations

— “User” code doesn’t change



Domain Specific Languages

 Lots of research done on DSLs
— Most of them wither away and die...

 What are the obstacles to widespread adoption?
— Critical mass
— Usually applied to simple, toy problems

— Little evidence that DSLs can be applied to industrial
scale applications



Unstructured Meshes

* For extremely complex cases, unstructured meshes are
the only tool capable of delivering correct results.
* Large, very complicated codebase

Vorticity isosurface from a large Eddy
simulation of a compressor




OP2 for Unstructured Grids

e Abstraction: /e\ﬂ\
o\ &

— Sets, maps, data
— Loop over sets, describing access type o

AN

res.h:

vold res (double *A, double *u, double *du) {
(*du) += (*A) * (*u);

} Call “res” for each edge Iterate over edges

op par loop(res,"res", edges,
op arg dat(A,-1,0P ID, 1,”double",OP READ), Withthe

op arg dat(u, 0,col,1,”double",OP READ), following
SrsaRaeat(dme O gaown. iy d opiloil el ACBLSTINC arguments



Rolls-Royce Hydra

Full aircraft
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Hydra is an unstructured mesh production
CFD application used at Rolls-Royce for
simulating turbo-machinery of aircraft engines

Internal Engine
blades

Turbines



Rolls-Royce Hydra

Used for the design of turbomachinery
— Key CFD production code
— Steady and unsteady flow
— Reynolds Averaged Navier-Stokes
In development for >15 years
— Fortran 77
— 50k+ lines of source code
— ~300 computational loops

Written in OPlus — same notions of sets, maps, data and loops over
sets

Our goal is to evaluate the utility of OP2, when applied to Rolls-
Royce Hydra




Conversion

* The original source code had to be converted to
use the OP2 API, keeping the “science” intact

* Hydra was based on OPlus, the conversion was
not difficult

— Computations did not change, they were only outlined
and described using the parallel loop API

From an application developer point of view,
this is it — the rest is about the library



do while (op_par_loop(ncells, istart, iend))
call op_access_r8('r’,areac,l,ncells,

& null,0,0,1,1)
call op_access_xr8(’u’,arean,l,nnodes,
& ncell,1l,1,1,3)
do ic = istart, iend
il = ncell(l,ic)
i2 = ncell(2,ic)
i3 = ncell(3,1ic)
arean(11) = arean(i1il) + areac(ic)/3.0
arean (i2) = arean(i2) + areac(ic)/3.0
arean(i3) = arean(i3) + areac(ic)/3.0
end do

end while

subroutine distr (areac,areanl,arean?, arean3)

real (8), intent (in) :: areac

real (8), intent (inout) :: areanl,
& arean?, arean?il

areanl = areanl + areac/3.0

arean?2 = areanZ + areac/3.0

arean3 = arean3 + areac/3.0

end subroutine

op_par_loop|[cells, distr,

& op_arg_dat (areac, |-1, OP_ID, 1, OP_READ),
& op_arg_daf (arean, |1, ncell, 1, OP_INC),

& op_arg_daf (arean, |2, ncell, 1, OP_INC),

& op_arg_datf (arean, |3, ncell, 1, OP_INC))




Code generation

 OP2-Hydra can do pure MPI right away, but
performance is poor due to loss of optimizations
(function pointers, outlined code, going through
Fortran to C bindings)

* Code generation for MPI can recover these
optimizations

* Python script parses op_par_loop calls in high-level
files, replaces them with calls to generated code

— Why not compilers?



Baseline performance

OPlus PP vs. OP2 perfectly match, down to instruction
count being within 5%.
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We can match and outperform the original under
the same circumstances

That alone is great, but what else can OP2 do?
Enable GPU execution of course...



Heterogeneous execution

Block 2

MPI boundary

:Owner—compute
- Halo exchanges

Fine grain parallelism
with CUDA or OpenMP

Code generation + pre-
processing to support
shared memory
parallelism via coloring



Generating CUDA Fortran

* A Fortran module for each “kernel”
— Set up pointers, reductions on the host

— CUDA kernel where threads set up the
parameters, call the user function, do memory
movement

* Slight modifications to user kernel
— Qualifiers, global constants



Challenges

* Large number of computational kernels
— Direct, Indirect read, Indirect Increment

 Huge kernels

— Datasets have up to 18 components (double precision
values per set element)

— Some kernels move up to 120 double precision values
for each set element

* |t's all about bandwidth utilization and occupancy



GPU optimizations

 Through the code generator

— Replace device constants (regexp)
— Change to SoA access (regexp)

var(m) -> var(nodes_stride*(m-1)+1), through OP2_SOA(var, nodes_stride,m)

* Manually

— Add intent(in) to variables to enable caching loads
* Auto-tuning
— Block sizes, register counts



GPU optimizations
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Strong scaling

800K vertices, 2.5M edges. 1 Hector node (32 cores) and 1 Jade node (2 K20 GPUs)
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Weak scaling

0.5M vertices per node
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Hybrid CPU-GPU execution

Using the CPU and the GPU at the same time
Some processes use the CPU, some the GPU

How to load balance? Some loops are faster on the GPU,
some on the CPU
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Conclusions

DSLs can be applied to industrial-scale codes

Early version was slow: cost of a high-level API

— Had to understand these limitations, code generate to circumvent
them

Matching & increased performance on the same HW

— By using OP2, some improved techniques come for “free”
(renumbering, better partitioning, better MPI, etc.)

Enabled OpenMP, CUDA and CPU+GPU Hybrid execution

— On such complicated code, the performance advantage is not huge —
but the option is there!

All of these optimizations apply with no (or very little) change to
the user code



Thank youl!
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