

Achieving Near-Native GPU Performance in the Cloud

John Paul Walters Project Leader, USC Information Sciences Institute jwalters@isi.edu

Outline

- Motivation
- ISI's HPC Cloud Effort
- Background: PCI Passthrough, SR-IOV
- Results
- Conclusion

Motivation

- Scientific workloads demand increasing performance with greater power efficiency
 - Architectures have been driven towards specialization, heterogeneity
- Infrastructure-as-a-Service (laaS) clouds can democratize access to the latest, most powerful accelerators
 - If performance goals are met
- Can we provide HPC-class performance in the cloud?

ISI's HPC Cloud Work

- Cloud computing is traditionally seen as a resource for IT
 - Web servers, databases
- More recently researchers have begun to leverage the public cloud as an HPC resource
 - AWS virtual cluster is 101 on Top500 list
- Major difference between HPC and IT in the cloud:
 - Types of resources, heterogeneity
- Our contribution: we're developing the heterogeneous HPC extensions for the OpenStack cloud computing platform

OpenStack Background

- OpenStack founded by Rackspace and NASA
- In use by Rackspace, HP, and others for their public clouds
- Open source with hundreds of participating companies
- In use for both public and private clouds
- Current stable release: OpenStack Juno
 - OpenStack Kilo to be released in April

Accessing GPUs from Virtual Hosts Using API Remoting

I/O performance low for gVirtus/KVM, LXC much closer to native performance.

Larger matrix multiply amortizes I/O transfer cost, LXC and native performance indistinguishable.

Accelerators and Virtualization

- Combine nonvirtualized
 accelerators with
 virtual hosts
- Results in > 99% efficiency

PCI Passthrough Background

- 1:1 mapping of physical device to virtual machine
- Device remains nonvirtualized

SR-IOV Background

- SR-IOV partitions a single physical device into multiple virtual functions
- Virtual functions almost indistinguishable from physical functions.
- Virtual functions passed to virtual machines using PCI passthrough

Image from: http://docs.oracle.com/cd/E23824_01/html/819-3196/figures/sriov-intro.png

Multi-GPU with SR-IOV and GPUDirect

- Many real applications extend beyond a single node's capabilities
- Test multi-node performance with Infiniband SR-IOV and GPUDirect
- 4 Sandy Bridge nodes equipped with K20/K40 GPUs
 - ConnectX-3 IB with SR-IOV enabled
 - Ported Mellanox OFED 2.1-1 to 3.13 kernel
 - KVM hypervisor
- Test with LAMMPS, OSU Microbenchmarks, and HOOMD

LAMMPS Rhodopsin with SR-IOV Performance

LAMMPS Lennard-Jones with SR-IOV Performance

LAMMPS Virtualized Performance

- Achieve 96% 99% efficiency
 - Performance gap decreases with increasing problem size
- Future work needed to validate results across much larger systems
 - This work is in the early stages

GPUDirect Advantage

- Validate GPUDirect over SR-IOV
 - Uses nvidia_peer_memory-1.0-0 kernel module
- OSU GDRMicrobenchmarks
- HOOMD MD

OSU GDR Microbenchmarks: Latency

OSU GDR Microbenchmarks: Bandwidth

GPUDirect-enabled VM Performance

N Nodes

Discussion

- Take-away: GDR provides nearly 10% improvement
- SR-IOV interconnect results in < 2% overhead
- Further work needed to validate these results in larger systems
 - Small-scale results are promising

Future Work

For full results see:

- J.P. Walters, et al. GPU Passthrough Performance: A Comparison of KVM, Xen,
 VMWare ESXi, and LXC for CUDA and OpenCL Applications, IEEE Cloud 2014
- A.J. Younge, et al. Supporting High Performance Molecular Dynamics in Virtualized Clusters using IOMMU, SR-IOV, and GPUDirect, to appear in VEE 2015.

Next steps:

- Extend scalability results
- OpenStack integration
- Code: https://github.com/usc-isi/nova

Questions and Comments

- Contact me:
 - jwalters@isi.edu
 - www.isi.edu/people/jwalters/

